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Let us try to use the interval [0.7, 1.9] for this test too. The null hypothesis in Example 9.34
is rejected at the 10% level in favor of a two-sided alternative, thus

|Z| > zα/2 = z0.05.

Then, either Z < −z0.05 or Z > z0.05. The first case is ruled out because the interval [0.7, 1.9]
consists of positive numbers, hence it cannot possibly support a left-tail alternative.

We conclude that Z > z0.05, hence the test (9.22) results in rejection of H0 at the 5% level
of significance.

Conclusion. Our 90% confidence interval for (µX − µY ) shows significant evidence, at the
5% level of significance, that the hardware upgrade was successful. ♦

Similarly, for the case of unknown variance(s).

A level α T-test of H0 : θ = θ0 vs HA : θ 6= θ0
accepts the null hypothesis

if and only if

a symmetric (1 − α)100% confidence T-interval for θ contains θ0.

Example 9.36 (Unauthorized use of a computer account, continued). A 99%
confidence interval for the mean time between keystrokes is

[0.24; 0.34]

(Example 9.19 on p. 267 and data set Keystrokes). Example 9.28 on p. 283 tests whether
the mean time is 0.2 seconds, which would be consistent with the speed of the account
owner. The interval does not contain 0.2. Therefore, at a 1% level of significance, we have
significant evidence that the account was used by a different person. ♦

9.4.10 P-value

How do we choose α?

So far, we were testing hypotheses by means of acceptance and rejection regions. In the last
section, we learned how to use confidence intervals for two-sided tests. Either way, we need
to know the significance level α in order to conduct a test. Results of our test depend on it.

How do we choose α, the probability of making type I sampling error, rejecting the true
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FIGURE 9.9: This test is “too close to call”: formally we reject the null hypothesis although
the Z-statistic is almost at the boundary.

hypothesis? Of course, when it seems too dangerous to reject true H0, we choose a low
significance level. How low? Should we choose α = 0.01? Perhaps, 0.001? Or even 0.0001?

Also, if our observed test statistic Z = Zobs belongs to a rejection region but it is “too
close to call” (see, for example, Figure 9.9), then how do we report the result? Formally,
we should reject the null hypothesis, but practically, we realize that a slightly different
significance level α could have expanded the acceptance region just enough to cover Zobs
and force us to accept H0.

Suppose that the result of our test is crucially important. For example, the choice of a
business strategy for the next ten years depends on it. In this case, can we rely so heavily
on the choice of α? And if we rejected the true hypothesis just because we chose α = 0.05
instead of α = 0.04, then how do we explain to the chief executive officer that the situation
was marginal? What is the statistical term for “too close to call”?

P-value

Using a P-value approach, we try not to rely on the level of significance. In fact, let us try
to test a hypothesis using all levels of significance!

Considering all levels of significance (between 0 and 1 because α is a probability of Type I
error), we notice:

Case 1. If a level of significance is very low, we accept the null hypothesis (see Figure 9.10a).
A low value of

α = P { reject the null hypothesis when it is true }
makes it very unlikely to reject the hypothesis because it yields a very small rejection region.
The right-tail area above the rejection region equals α.

Case 2. On the other extreme end, a high significance level α makes it likely to reject the null
hypothesis and corresponds to a large rejection region. A sufficiently large α will produce
such a large rejection region that will cover our test statistic, forcing us to reject H0 (see
Figure 9.10b).

Conclusion: there exists a boundary value between α-to-accept (case 1) and α-to-reject (case
2). This number is a P-value (Figure 9.11).
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FIGURE 9.10: (a) Under a low level of significance α, we accept the null hypothesis. (b)
Under a high level of significance, we reject it.

DEFINITION 9.9

P-value is the lowest significance level α that forces rejection of the null hy-
pothesis.

P-value is also the highest significance level α that forces acceptance of the
null hypothesis.

Testing hypotheses with a P-value

Once we know a P-value, we can indeed test hypotheses at all significance levels. Figure
9.11 clearly shows that for all α < P we accept the null hypothesis, and for all α > P , we
reject it.

Usual significance levels α lie in the interval [0.01, 0.1] (although there are exceptions). Then,
a P-value greater than 0.1 exceeds all natural significance levels, and the null hypothesis
should be accepted. Conversely, if a P-value is less than 0.01, then it is smaller than all
natural significance levels, and the null hypothesis should be rejected. Notice that we did
not even have to specify the level α for these tests!

Only if the P-value happens to fall between 0.01 and 0.1, we really have to think about
the level of significance. This is the “marginal case,” “too close to call.” When we report
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FIGURE 9.11: P-value separates α-to-accept and α-to-reject.

the conclusion, accepting or rejecting the hypothesis, we should always remember that with
a slightly different α, the decision could have been reverted. When the matter is crucially
important, a good decision is to collect more data until a more definitive answer can be
obtained.

Testing H0

with a P-value

For α < P, accept H0

For α > P, reject H0

Practically,

If P < 0.01, reject H0

If P > 0.1, accept H0

Computing P-values

Here is how a P-value can be computed from data.

Let us look at Figure 9.10 again. Start from Figure 9.10a, gradually increase α, and keep
your eye at the vertical bar separating the acceptance and rejection region. It will move to
the left until it hits the observed test statistic Zobs. At this point, our decision changes,
and we switch from case 1 (Figure 9.10a) to case 2 (Figure 9.10b). Increasing α further, we
pass the Z-statistic and start accepting the null hypothesis.

What happens at the border of α-to-accept and α-to-reject? Definition 9.9 says that this
borderline α is the P-value,

P = α.

Also, at this border our observed Z-statistic coincides with the critical value zα,

Zobs = zα,

and thus,
P = α = P {Z ≥ zα} = P {Z ≥ Zobs} .

In this formula, Z is any Standard Normal random variable, and Zobs is our observed test
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statistic, which is a concrete number, computed from data. First, we compute Zobs, then
use Table A4 to calculate

P {Z ≥ Zobs} = 1− Φ(Zobs).

P-values for the left-tail and for the two-sided alternatives are computed similarly, as given
in Table 9.3.

This table applies to all the Z-tests in this chapter. It can be directly extended to the case
of unknown standard deviations and T-tests (Table 9.4).

Understanding P-values

Looking at Tables 9.3 and 9.4, we see that P-value is the probability of observing a test
statistic at least as extreme as Zobs or tobs. Being “extreme” is determined by the alterna-
tive. For a right-tail alternative, large numbers are extreme; for a left-tail alternative, small
numbers are extreme; and for a two-sided alternative, both large and small numbers are
extreme. In general, the more extreme test statistic we observe, the stronger support of the
alternative it provides.

This creates another interesting definition of a P-value.

DEFINITION 9.10

P-value is the probability of observing a test statistic that is as extreme as or
more extreme than the test statistic computed from a given sample.

The following philosophy can be used when we test hypotheses by means of a P-value.

We are deciding between the null hypothesis H0 and the alternative HA. Observed is a test
statistic Zobs. If H0 were true, how likely would it be to observe such a statistic? In other
words, are the observed data consistent with H0?

A high P-value tells that this or even more extreme value of Zobs is quite possible under
H0, and therefore, we see no contradiction with H0. The null hypothesis is not rejected.

Conversely, a low P-value signals that such an extreme test statistic is unlikely if H0 is true.

Hypothesis
H0

Alternative
HA

P-value Computation

right-tail
θ > θ0

P {Z ≥ Zobs} 1− Φ(Zobs)

θ = θ0
left-tail
θ < θ0

P {Z ≤ Zobs} Φ(Zobs)

two-sided
θ 6= θ0

P {|Z| ≥ |Zobs|} 2(1− Φ(|Zobs|))

TABLE 9.3: P-values for Z-tests.
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Hypothesis
H0

Alternative
HA

P-value Computation

right-tail
θ > θ0

P {t ≥ tobs} 1− Fν(tobs)

θ = θ0
left-tail
θ < θ0

P {t ≤ tobs} Fν(tobs)

two-sided
θ 6= θ0

P {|t| ≥ |tobs|} 2(1− Fν(|tobs|))

TABLE 9.4: P-values for T-tests (Fν is the cdf of T-distribution with the suitable number
ν of degrees of freedom).

However, we really observed it. Then, our data are not consistent with the hypothesis, and
we should reject H0.

For example, if P = 0.0001, there is only 1 chance in 10,000 to observe what we really
observed. The evidence supporting the alternative is highly significant in this case.

Example 9.37 (How significant was the upgrade?). Refer to Examples 9.14 and
9.34. At the 5% level of significance, we know that the hardware upgrade was successful.
Was it marginally successful or very highly successful? Let us compute the P-value.

Start with computing a Z-statistic,

Z =
X − Y√
σ2
X

n +
σ2
Y

m

=
8.5− 7.2√
1.82

50 + 1.82

50

= 3.61.

From Table A4, we find that the P-value for the right-tail alternative is

P = P {Z ≥ Zobs} = P {Z ≥ 3.61} = 1− Φ(3.61) = 0.0002.

The P-value is very low; therefore, we can reject the null hypothesis not only at the 5%, but
also at the 1% and even 0.05% level of significance! We see now that the hardware upgrade
was extremely successful. ♦

Example 9.38 (Quality inspection). In Example 9.26, we compared the quality of
parts produced by two manufacturers by a two-sided test. We obtained a test statistic

Zobs = −0.94.

The P-value for this test equals

P = P {|Z| ≥ | − 0.94|} = 2(1− Φ(0.94)) = 2(1− 0.8264) = 0.3472.

This is a rather high P-value (greater than 0.1), and the null hypothesis is not rejected.
Given H0, there is a 34% chance of observing what we really observed. No contradiction
with H0, and therefore, no evidence that the quality of parts is not the same. ♦
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Table A5 is not as detailed as Table A4. Often we can only use it to bound the P-value
from below and from above. Typically, it suffices for hypothesis testing.

Example 9.39 (Unauthorized use of a computer account, continued). How
significant is the evidence in Examples 9.28 and 9.36 on pp. 283, 287 that the account was
used by an unauthorized person?

Under the null hypothesis, our T-statistic has T-distribution with 17 degrees of freedom.
In the previous examples, we rejected H0 first at the 5% level, then at the 1% level. Now,
comparing t = 5.16 from Example 9.28 with the entire row 17 of Table A5, we find that
it exceeds all the critical values given in the table until t0.0001. Therefore, a two-sided test
rejects the null hypothesis at a very low level α = 0.0002, and the P-value is P < 0.0002.
The evidence of an unauthorized use is very strong!

♦

9.5 Inference about variances

In this section, we’ll derive confidence intervals and tests for the population variance σ2 =
Var(X) and for the comparison of two variances σ2

X = Var(X) and σ2
Y = Var(Y ). This will

be a new type of inference for us because
(a) variance is a scale and not a location parameter,
(b) the distribution of its estimator, the sample variance, is not symmetric.

Variance often needs to be estimated or tested for quality control, in order to assess stability
and accuracy, evaluate various risks, and also, for tests and confidence intervals for the
population means when variance is unknown.

Recall that comparing two means in Section 9.3.5, we had to distinguish between the cases
of equal and unequal variances. We no longer have to guess! In this section, we’ll see how
to test the null hypothesis H0 : σ2

X = σ2
Y against the alternative HA : σ2

X 6= σ2
Y and decide

whether we should use the pooled variance (9.11) or the Satterthwaite approximation (9.12).

9.5.1 Variance estimator and Chi-square distribution

We start by estimating the population variance σ2 = Var(X) from an observed sample X =
(X1, . . . , Xn). Recall from Section 8.2.4 that σ2 is estimated unbiasedly and consistently by
the sample variance

s2 =
1

n− 1

n∑

i=1

(
Xi −X

)2
.

The summands
(
Xi −X

)2
are not quite independent, as the Central Limit Theorem on p. 93

requires, because they all depend on X. Nevertheless, the distribution of s2 is approximately
Normal, under mild conditions, when the sample is large.

For small to moderate samples, the distribution of s2 is not Normal at all. It is not even
symmetric. Indeed, why should it be symmetric if s2 is always non-negative!


