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ABSTRACT

Recent research has proposed a method of patent valuation based on weighting patent family
size by the market size of the countries in the family. The premise is that inventors tend to seek
greater international coverage for their more valuable patents. The paper presents a novel way to
test the ability of market size-weighted patent families to predict patent value and compares the
method against extant measures of patent valuation based on patent citations and renewal
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behaviour. We use forecasting techniques to show that the weighted patent family size measure
outperforms other methods in terms of predicting patent life and the number of citations. An
advantage of the weighted patent family size measure is that it is based on ex-ante information
and is easy to construct for purposes of evaluating patent value. We demonstrate this advantage
using a large, comprehensive database of international patent families.

I. Introduction

Patent valuation is important to firms’ decision-
making and strategies. For example, it shapes incen-
tives for investments in innovation. It also plays a key
role in licensing negotiations and in determining the
relative bargaining strength of parties (Smith and
Parr 2000). Patent litigation is also affected by per-
ceptions of patent value. The more valuable the
patent rights are, the more committed patent holders
will be to monitor and enforce their rights. Patent
valuation is also important to policy-makers for
assessing the impact of legal provisions or innovation
policies on the level and quality of new technologies."
Is the policy regime merely encouraging the filing of
patents for low-valued inventions or generating
transformative wealth-creating activities? The valua-
tion of patents can also provide useful indicators for
comparing the production of innovations across
industries and countries.

However, the value of patents is not easily
observed. Patent rights are not frequently or widely
traded like financial instruments, such as equities.
Large, international exchange institutions for pro-
viding markets for patent rights are absent.” Few

firms publicly disclose details about their patent
transactions or technology transfer agreements.
Furthermore, not all patent rights have a steady
cash flow, since some (if not many) patented inven-
tions are not commercialized or are not ‘worked’
(put into practice). Other problems may be that
some patents are invalid (not correctly granted and
will be invalidated upon challenge) or that asym-
metric information exists (where the seller knows
the quality of the underlying invention but the buyer
does not) so that contract prices may distort the true
valuation of patents.’

Consequently, from a research standpoint, patent
valuation is largely based on observing the character-
istics of a patent or the behaviour of a patent holder
that may reveal information about the underlying
value. For example, previous work by Bessen
(2008), Lanjouw, Pakes, and Putnam (1998), Pakes
and Simpson (1989) and Schankerman and Pakes
(1986) examined patent renewal behaviour. Given
the costs of maintaining patent rights, the relatively
most valuable patents will be selected by patent
holders for renewal. Another approach has been to
factor in a patent’s forward citations (see Trajtenberg
(1990), Harhoff et al. (1999), Jaffe and Trajtenberg
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TSee Bessen and Meurer (2009).

2However, patent rights are tradable at auctions, held for example by Ocean Tomo, an intellectual property merchant bank. Fisher and Leidinger (2014) and

Mauck and Pruitt (2016) study patent values from Ocean Tomo auctions.

3See Murphy, Orcutt, and Remus (2012) for a discussion of the impact of adverse selection on patent values.
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(2002), and Hall, Jaffe, and Trajtenberg (2005)). The
more valuable a patent is the more likely it will find
use in follow-on research or production and there-
fore be more often cited. Barney (2002) finds that
citations and renewal are related in that patents that
receive no forward citation in their first four years are
less likely to be renewed than those with multiple
citations. On the other hand, patent renewals and
citations may not always yield the same ‘signal’.
A patent may lapse (for lack of market value or
other) and yet continued to be cited.*

Another approach to gauging patent value is
to examine patent family size (see Harhoff,
Scherer, and Vopel 2003; Johnstone et al. 2012;
Lanjouw and Schankerman 2004; Putnam 1996).
Patent family size refers to the number of coun-
tries in which an invention is protected by
a patent; that is, the priority filing and the sub-
sequent filings that emanate from it.” Given the
costs of acquiring patents in multiple jurisdic-
tions, rights holders would reserve their more
valuable technologies for international patenting.
A variant of this approach is to consider triadic
patents, where an invention is protected in the
three major markets, namely the U.S., Japan and
the European Patent Office (EPO) (see Dernis,
Guellec, and van Pottelsberghe De La Potterie
2001; Kumazawa and Gomis-Porqueras 2012),
or transnational patents, which are patent
families with at least one EPO or Patent
Cooperation Treaty (PCT) filing. But both the
raw family size and the triadic variable do not

take into account the potential market size of
the protected areas.’

A key limitation of the citation and renewal meth-
ods is that patent values are assessed ex-post. As
pointed out by Hall, Jaffe, and Trajtenberg (2005),
a sufficient time is needed after a patent is first
published to observe citations of it by later patents.
Furthermore, patent citations are not distinguished
by how much impact the cited patents have on an
invention; for example, patent X may cite prior
patents A and B, but A may be more important to
X’s function than B. Moreover, the reason patent
X may cite A and B is to indicate that they are
alternative products or methods of production, so
that X is not infringing on them, rather than that
patent X builds on them. Renewals are also observed
later in the life of a patent. Another limitation is that
renewal decisions may be made not on grounds of
patent value, but on changes in the cost of renewing
or maintaining patents. The limitation of patent
family size as a measure of patent value is that it
does not take into account the attractiveness of
different market destinations.

Our contribution here is to join recent work that
weights patent family size by indicators of the mar-
ket potential of the countries comprising the patent
family (see van Pottelsberghe De La Potterie and van
Zeebroeck 2008; Frietsch et al. 2010; Ernst and
Omland 2011; Neuhausler and Freitsch, 2013;
Dechezleprétre, Méniére, and Mohnen 2017).” The
rationale for factoring in the market size is that
rights holders who possess more valuable patents

“Moreover, renewal decisions may largely reflect private value while citations reflect some social value as well, considering the impacts of the patented

technology on other inventions.

®There is also an extended patent family definition, as described in Hingley and Park (2003), where ‘a patent family encompasses all the documents related
to the patents emanating from an invention, including documents that may cross relate to other inventions as well.” See also Martinez (2011) for

a thorough survey of patent family definitions and methodologies.

SThere are other potential indicators of patent value, such as whether a patent has faced an opposition challenge (Harhoff and Reitzig 2004), the number of

claims in a patent (Tong and Frame, 1994), auction prices (Nair, Mathew, and Nag 2011; Sneed and Johnson 2009), and filings strategies (van Zeebroeck
and van Pottlesburg de la Potterie, 2011). Other approaches to determining patent value are event studies around court decisions or patent
announcements (see Henry 2013; Austin 1993). In this paper, we focus primarily on comparing our method of valuation to the most widely used
indicators of patent value thus far, namely patent renewals and citations. In this paper, we do control for patent claims which are also ex-ante information.
We had examined data on opposition in preliminary work, but do not pursue them further here. While it is likely that patents with much commercial value
are the ones that will be challenged, they will also be challenged if they are invalid from a legal perspective.

van Pottelsberghe De La Potterie and van Zeebroeck (2008) focus on the size and age of a patent family and discuss how the market size (GDP) of
destination countries is an important factor in the patent validation strategy of firms but do not construct a GDP-weighted measure of patent families.
Ernst and Omland (2011) weight patent counts by market coverage in order to develop a Patent Asset Index for firms. Specifically, a firm’s patent portfolio
is evaluated based on the GDP of countries covered and its technological relevance based on citations received. Dechezleprétre, Méniére, and Mohnen
(2017) argue that the timespan between the first application date and last application date within an extended patent family can be an indicator of value,
as the lag could reflect the applicant’s strategy to optimize patent scope over time. Freitsch et al. (2010) incorporate export volumes and intensities to
patent value indicators. Neuhausler and Freitsch (2013) use six different variables for weighting patent family sizes: the imports, GDP, population, strength
of patent protection, global competitiveness, or intensity of local competition of the countries in the family. A key difference between our paper and
Neuhausler and Frietsch (2013) is that we weight patent families by the level of GDP so as to capture the absolute market size of a country, whereas
Neuhausler and Frietsch (2013) normalize their family size measures (so as to focus on average family sizes); for example, they use the share of a country’s
GDP in the world’s total (or for the variables that are indexes, they use the percentage of the maximum value).



would self-select in protecting their inventions in
greater and larger world markets. Our main value
added to this literature is that we develop a novel
way to test the extent to which patent family size,
weighted by market size, is informative about patent
value. Such a test and demonstration of the predic-
tive ability of market-weighted patent family size has
not been done thus far. A key advantage of the
weighted patent family size as a measure of patent
value is that it is ex-ante; that is, it provides more
current information about patent value. This would
be highly useful for current business decision-
making or policy-making, as well as for applied
research that utilizes patent data. To demonstrate
this advantage, our empirical test centres on how
well the weighted patent family size method can
forecast patent life and forward citations, which are
common measures of patent value after the fact.

The paper is organized as follows. The next sec-
tion discusses the construction of our measure of
patent value and the alternative measures of value.
Section III discusses our dataset. Section IV dis-
cusses our methodology for testing and comparing
our approach to alternative measures of value.
Section V contains our results, variations and some
sample trends in patent value by country and tech-
nology. Section VI concludes.

Il. Valuing patents by the market size of patent
families

Several reasons exist as to why patent rights are sought
in large markets and why such rights are more valu-
able in those markets.® First, the value of obtaining
a patent for a new innovation depends on multiple
factors, such as the nature of the technology, the
inventive step, the demand for that technology by
consumers and potential licensees, imitation risk
and the availability of alternative appropriation
mechanisms. In small economies where the market
for the technology and expected returns are limited, or
where imitation risk is low, the incentives for obtain-
ing a patent are relatively small or non-existent. In
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larger economies, markets for technology tend to be
larger, which can both raise the demand for licensing
as well as attract imitation and infringement given
that copiers would likely target products with large
mass appeal. In that vein of thought, competition is
likely to be more intense in larger markets, owing to
rivals that can innovate or imitate and thereby create
competing technologies. Consequently, in larger
economies, the incentives to procure patents and
enforce them would tend to be greater.

Second, not only is it costly to file patents in the
multiple countries that comprise a patent family,
but the cost is higher in larger markets, such as
Europe, Japan and the U.S. Figure 1 shows that the
cost of patenting varies positively with the income
level of the destination: the larger the market, the
greater the cost per patent. Using data for 2010, the
figure breaks down destinations by four quartiles,
based on GDP (in PPP international dollars) and
shows the average fees of obtaining a patent in each
income quartile. The fees refer to official fees as
well as to agent (or attorney) fees.” The fees exclude
renewal fees, but an earlier study by Berrier (1996)
confirms that the cradle-to-grave costs (i.e., during
the lifespan of a patent right) tend to be greater in
larger markets, such as Japan, EPO and the U.S.
Furthermore, Berger (2005) finds that the cost of
patenting in the EPO is compounded by require-
ments for translation of the patent document and
validation fees (whereby an EPO patent must be
activated in each individual member state that is
designated in the patent). Hence, factoring in the
cost and expense of international patent filing, the
relatively most valuable innovations would tend to
be selected for patenting in the larger markets.

To capture this, we start with a patent family and
weight each country in the family by its market size,
namely its gross domestic product. A patent family
consists of the priority patent and its subsequent
patents. Under the Paris Convention, a priority
patent application is an initial patent application
that allows an applicant to file subsequent patent
applications for the same invention in other coun-

8The focus here is on patent value and not patent quality. Quality deals more with whether a technology should have been patented; whether it is novel and
robust, or correctly awarded. Value deals with the commercial or market value of having a right. Even a minor innovation may be valuable if one can ‘own’
it, particularly if it is overly broad and generic (e.g. algorithm for sorting, where it would indeed be quite profitable to charge other people for the right to
use). See Kappos and Graham (2012) for a discussion of measures to improve patent quality.

The data are from Park (2010) and sources cited therein.
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Figure 1. Relationship between patenting cost and market size.

tries within a year. Within each patent family, we
focus on those countries in which the patent has
been granted and validated.

Suppose that V is the unobserved value of
a priority patent j. Let V; be an observable indicator
of this value; that is, V' = V7(V}) is some function
of the observable. For example, V; could be the
number of citations received by priority patent
j within the first T years of its life. Alternatively, it
could be the number of countries in the patent
family; namely, the country of priority patenting
and countries of subsequent patenting. Let the raw
family size (count) be

N
V=1, (1)

n=1

where I, is an indicator function which equals
one if priority patent j is patented in country
n and zero otherwise, and N is the total number
of countries (including the country of priority
filing). Equation (1) is what de Rassenfosse,
Dernis, and Boedt (2014) call ‘geographic’ family
size. The more countries covered by the priority
patent, the more valuable it may be. However,
the raw family size in (1) does not take into
account the market sizes of countries. Larger
markets are likely to be not only more attractive
for exploiting an invention but also more com-
petitive for acquiring patent rights and costlier
to enforce them. Hence, we modify (1) to take
into account market size:

N
‘/j = Z wyly (2)
n=1

where w, = GDP,, (real gross domestic product of
country n). We refer to (2) as the GDP-weighted
family size of patent j, which takes into account
the composition of the international patent family
in terms of the market size of countries.

More specifically, we sample the GDP-weighted
family size of priority patent j at the date of its
application (time t):

N
Vjt = Z Wnelnt (3)
n=1

That is, we evaluate the market sizes of all the
countries in the patent family as of time t. Thus,
once we evaluate the global market size of the
patent family at time t, we hold that value fixed
in our subsequent ex-ante analyses of patent value.
We do not update the GDPs of the countries in
the patent family after time t, as our goal is to
evaluate the ex-ante ability of the GDP-weighted
patent family size to predict the patent value of the
priority patent.

We can then assess this patent valuation ex-post
by judging how long the patent lived on the pre-
mise that patent holders will maintain their more
valuable patents. Hence, priority patent j is
renewed in country n at some future time 7>¢ if
the benefit of having a patent right over not hav-
ing it exceeds the cost of maintaining and enfor-
cing the property right:



R{aT(V*) _NR{ar(V*)Z’CnT (4)

and not renewed otherwise, where R,,; is the ben-
efit of renewing the patent in country n at time 7
and NR,; the benefit of exploiting the technology
without the protection of a patent in country n at
time 7, and «,, denotes the cost of renewing the
patent right in country n at time 7.’ In the
empirical section, the duration of patent j is
defined as the period between the date of filing
and the date when the patent is no longer renewed
in any of its family countries."'

lll. Data sources

We utilize a dataset of patent families, each of
which is composed of the priority patent and
subsequent patents that have been granted. Data
on this come from a worldwide patent statistical
database, PATSTAT, a database gathered by the
European Patent Office (EPO) on behalf of the
OECD Taskforce on Patent Statistics. We
employed the autumn 2018 version of PATSTAT
Global which contains bibliographical data on
several millions of patent documents from around
the world, including the legal events involving
patents (such as payment of renewal fees and
cessation of patent rights).

We focus on granted patents so that we can study
their renewal and lapses, the key aspects that deter-
mine their value. Our empirical analysis covers the
cohorts of priority patents associated with patent
application years 1982 to 2012 (inclusive)."* We
use the application date of the priority filing as the
application date for the whole family. While we
collected data on patent grants data up to 2017, we
end the sample in 2012 to enable us to adequately
observe the outcomes of various metrics of patent
valuation, such as patent citations received in the
first few years of patent life beyond 2012. Our sam-
ple also requires that priority patents have expired,
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or lapsed, during the sample period so that we can
know the ultimate lifespan of the priority patents in
the sample.

In our empirical analysis, we also restricted the
sample to priority patent grants that have a family
size of at least two countries. There are two reasons
for doing so. The first is to test whether international
market coverage reveals the underlying value of
a patent, which we would not capture well if we
included domestic-only patents (or singletons).
The second is that a significant number of these
domestic-only patents are where the priority filing
is in the U.S. The U.S. is a very large market - its
GDP is typically greater than the sum of that of the
other four nations — and so domestic U.S. patents
would still be valuable on that basis, even if their
family sizes are just one. Thus, a potential problem is
that some patents with no subsequent filings may
send mixed messages: they could represent patents
of modest value or high value if they cover a very
large single market, like the U.S." For these reasons,
we focus our analyses on those patent families whose
family size exceeds one."

Construction of the dataset

We initially extracted just over eight million
patent priority filings from five major inventor
(source) countries — the USA, Japan, Germany,
France and the United Kingdom - and four
major applicant types — companies, individuals,
universities and governments and non-profits —
from 1982-2017. Again, we selected granted
patents and patents of inventions. We considered
all destination countries in which there could be
subsequent filings, including the five source coun-
tries. Our data include first filings at the EPO and
their subsequent validation in member states.
After matching this first draw of the data to the
available data on citations and lapses, our dataset

'%See Schankerman and Pakes (1986) for more detailed analyses of the patenting decision. In the empirics, we do not explicitly model the costs of filing and
renewing patent rights since we rely on revealed preference; namely, that the costs did not exceed the benefit of obtaining and maintaining rights for

those patents still in force.

""For example, suppose a patent is filed in 1980 and has a patent family of three countries. In the first country, the patent is not renewed in 1985, in
the second, it is not renewed in 1990, and in the third, it is not renewed in 1995. The patent’s duration is then 15 years (1995 minus 1980). Van Zeebroeck
(2007) calls this the single renewal approach. One advantage of this definition is that it is much less influenced by the maintenance fees of an individual

country.

2We begin our sample after 1981 to allow for the shift in U.S. practice of introducing maintenance fees in December 1980.

30ur results still hold qualitatively if we include ‘singletons’, but the results are sharper and stronger without them.

0n the other hand, Dechezleprétre, Méniére, and Mohnen (2017) provide an analysis that exploits information about the multiple patents within each
country that can be part of an international patent family. This allows for the valuation of patents that are never patented abroad.
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diminishes to just over two million observations.
We culled further by matching to the available
data on patent claims and arrived at a dataset of
1,354,926 observations (or priority filings).

Our construction of a patent family follows what
Martinez (2011) calls the single first filing based
families; each first filing forms a family with the
subsequent filings that claim it as a priority. The
number of subsequent filings plus the priority filing
gives the count of the family. It is the geographic
family size, or number of countries covered in the
patent family."” The composition of countries in the
patent family is identified by the application autho-
rities associated with the filings. The GDP-weighted
patent family size is obtained by summing the real
gross domestic product of the countries in the patent
family; the GDP is as of the year of application and
are converted into constant 2005 U.S. dollars."® For
EPO grants, we summed the GDP of the jurisdic-
tions in which the patent was validated. We deter-
mined the countries in which an EPO grant was
validated by examining the member states to which
the payments of renewal fees were made.

The duration of a patent is computed as the
length of time between the date of its earliest
application and the date when it lapsed in all of
the countries in the patent family. Figure 2 shows

Sh

Figure 2. Percentage distribution of patents by duration.
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the distribution of patents in our sample by their
duration. The mode of the distribution is between
11 and 12 years of patent life.

Information about citations comes from pub-
lished patent documents. The citations-based indi-
cator used here is the forward citations (including
self-citations) received by a priority patent during
the first 5 years after its earliest date of publication,
which is our point of reference for counting cita-
tions. As Hall, Jaffe, and Trajtenberg (2001) discuss,
the longer the time passes, the more opportunity
a patent has to be cited, and so as to minimize this
bias we consider citations over this fixed length (first
5 years).'” In any case, citations tend to drop sub-
stantially after 6-8 years of publication. Details on
citations are in PATSTAT’s published patent docu-
ments. We identified the cited patent publication
number and counted the number of times it was
cited by other published patents within five years of
the earliest publication year of the cited patent. We
do not include citations in the non-patent literature.

The number of inventors associated with
a priority patent is readily provided in PATSTAT.
Patent portfolio size is the count of priority patents
granted to the patent holder - namely, the person
name or entity associated with the priority patent —
by application year.'® We use patent portfolio size as

5-16 7-18 19 or more

11-12 3-14

eeeee

'>PATSTAT Global also readily provides the size of simple families via the DOCDB_family_id identifier.
'®GDP data are from the World Bank’s World Development Indicators. In preliminary analyses, we also worked with private GDP — netting out government

expenditures — and found the results to be very similar.

"In preliminary analyses, we also worked with citations received during the first 8 years after publication and found the results to be highly similar.

"8For example, if person X has priority (granted) patents A, B, and C indexed by application year T, the portfolio size equals three for person X at time T. Each
patent A, B, and C is then associated with a portfolio size of three. The person name is based on a harmonized or standardized name. From the PATSTAT
database, we aggregated priority patent grants by person identification number and application year.



a proxy for firm (or entity) size. The number of
claims in a patent is also available in the published
patent documents but is only available for certain
U.S. and EPO patent publications. Hence, the sam-
ple size falls when we utilize data on patent claims."”
Lastly, we identify the technological field of the
priority patent based on the World Intellectual
Property Organization (WIPO)’s technology concor-
dance with the International Patent Classification sys-
tem. Our dataset spans 35 technology classes, from
Electrical Machinery to Civil Engineering.”’

Summary statistics

Table 1 presents some descriptive statistics. The top
part shows the means and standard deviations of the
variables of interest broken down by inventor coun-
try, and the bottom part by applicant type. The
priority patent grant is the unit of analysis in this
table. Hence, the entries show the statistics per
patent. The sample consists mostly of the U.S. and
Japanese patents (about 35% each). About three-
quarters of the sample are company patents and
about one-fifth are individual inventor patents.
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The average patent duration is just under 12
years, compatible with Figure 2. Japan has the high-
est (at 13) while Germany has relatively the lowest
(at 12.3). the U.S. patent grants have the most cita-
tions in the first 5 years, garnering just above 22
cites. The U.K. has the largest mean family size.
However, once family sizes are weighted by GDP,
the average Japanese patent covers the largest mar-
ket size in terms of real GDP (i.e., $11.7 trillion in
real 2005 U.S. dollars). By applicant type, university
patents have the longest duration, most citations
received and largest family sizes (weighted and
unweighted).

Other indicators in the table will be used as control
variables. Patent portfolio size is the number of patent
grants held by the inventor (associated with the prior-
ity patent grant). It is intended to capture whether an
inventor (or firm) is large or small. As Table 1 shows,
the average portfolio size is about 69 patents, but this
varies considerably across source countries and sec-
tors. Companies typically have the largest patent port-
folios and individual inventors the smallest. Japanese
inventors have on average the largest patent portfolios
and inventors from the U.K. the smallest among the

Table 1. Patent sample statistics, by source country and applicant type.

Group Weighted Patent

(% group Duration Citations Family Family Portfolio No. of Patent Triadic
share) (Years) first 5 yrs Size Size Size Inventors Claims Patents
France 12.8 1.3 7.6 11.0 131 2.2 12.6 0.6
(6.9%) (4.5) (21.2) (4.8) (5.1) (26.6) (1.4) (9.5) (0.5)
Germany 123 10.8 59 10.6 41.6 25 12.2 0.5
(18.7%) (4.4) (17.9) (4.4) (4.7) (91.1) (1.8) (8.3) (0.5)
Japan 13.0 15.0 4.8 1.7 106.7 2.8 11.8 0.3
(35.5%) (3.8) (25.7) (3.8) (3.9) (220.6) (1.9) (9.7) (0.5)
UK. 12.8 15.6 84 10.5 73 2.1 13.7 04
(3.8%) (4.4) (28.6) (6.9) (4.3) (16.4) (1.5) (9.6) (0.5)
US.A. 124 226 6.3 10.2 62.7 24 16.7 0.2
(35.1%) (4.0) (40.9) (7.0) (3.4) (193.3) (1.7) (13.4) (0.4)
Company 12.8 16.1 6.0 10.90 90.7 25 13.4 0.4
(75.1%) (4.2) (29.7) (5.5) (4.4) (204.9) (1.7) (10.9) (0.5)
Gov Non-Profit 12.8 16.3 6.0 10.69 12.3 2.8 13.4 0.4
(1.5%) (4.1) (39.0) (4.6) (4.2) (15.5) (1.7) (10.1) (0.5)
Individual 12.2 18.1 54 10.86 1.6 2.6 14.5 0.1
(22.0%) (3.6) (33.7) (5.7) (2.7) (1.7) (2.0) (11.7) 0.2)
University 13.3 25.6 6.2 10.92 11.0 2.7 17.8 0.2
(1.4%) (3.8) (46.1) (5.5) (3.5) (22.8) (1.6) (14.9) (0.4)
Total 12.6 16.7 5.9 10.9 68.8 25 13.7 0.3
N = 1,354,926 (4.1) (31.1) (5.5) (4.1) (181.7) (1.8) (11.1) (0.5)

The unit of analysis is a granted patent. The table shows the means, with standard deviations in parentheses. Sample period is 1982-2012. Duration of
patent life is measured from the date of application to the date of last. non-renewal. Family size is the count of countries associated with a priority patent.
Weighted family size is the count, weighted by the country’s GDP in trillions of real 2005 U.S. dollars. Citations are counts of forward citations by other
patents during the first 5 years of a patent’s life. Patent portfolio size is the number of patents granted to the inventor associated with the priority patent.
The number of inventors is the number of such persons associated with the granted patent. Patent claims are the number reported in the published
patent. Triadic indicates the fraction of patent families comprising the EPO, USPTO, and JPO.

""We have performed the analysis in a much larger dataset without patent claims data. The results are qualitatively similar and are available upon request.
To avoid showing too many tables and figures, we only present the results with claims data.
see http://www.wipo.int/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf for details.


http://www.wipo.int/ipstats/en/statistics/patents/pdf/wipo_ipc_technology.pdf
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countries we have considered. We also consider the
number of inventors associated with each patent
grant; the average is close to three across countries
or across applicant types. the U.S. patent grants con-
tain the most claims, while Japanese ones contain the
least. Among applicant types, university patents con-
tain relatively the most claims. Lastly, about 30% of
patents in the sample are Triadic, having been filed in
the USPTO, EPO and JPO. Percentage-wise, triadic
patents are relatively more common in France,
Germany and the UK. (given their membership in
the EPO), than in Japan and the U.S. They are also
more common among company and government
(and non-profit) patents than among individual and
university patents.

IV. Methodology: forecasting exercise

Our task is to compare among the various indica-
tors of patent value and conduct a kind of ‘horse
race’ to see which one might contain the better
signal of patent value. First, we compare the GDP-
weighted patent family size measure against patent
citations obtained within the first 5 years to pre-
dict the duration of patents. Second, we compare
the GDP-weighted patent family size measure
against the duration of patents to predict patent
citations received within the first five years.

To carry out our test of predictive properties, we
need an estimation period and an out-of-sample fore-
casting period. To obtain these, we randomly split our
sample of priority patents into two balanced groups.
The sampling is done to ensure that the two resulting
subsets are representative of the overall population.
The two resulting groups are balanced in terms of the
representation of source country, technological fields,
application years, family size, patent duration, portfo-
lio size, number of inventors, patent claims and for-
ward citations (in the first five years).

Let us call one sample A and the other sample
B. We then have an equation for patent duration that
contains one of the patent value indicators as one of
the independent variables. The methodology here is
to estimate this model using sample A, and then to
use the estimated model (or fitted model) to predict
the duration in sample B, and finally to compare the
actual duration of the B sample against the

forecasted duration of the B sample. The model,
with whichever indicator of patent value, that has
the best forecast accuracy (for example, the lowest
root mean square percentage error) is deemed to be
the best at predicting duration. For robustness, we
perform the reverse: we estimate the model using
sample B and use it to predict duration in sample
A. This methodology is intended to mimic how the
GDP-weighted patent family size measure might be
used in practice; namely, to predict at time t (the
present), how long the patent will live (an ex-ante
perspective). The reason we do not perform this
exercise (i.e., to forecast duration and then compare
it to actual duration) with the original (whole) sam-
ple is that we would be using the same patent data to
make the predictions that we used to estimate the
parameters. By splitting the sample into two sub-
samples (A and B), we use an estimated model from
one dataset (one realization of the world) to forecast
duration in another draw of the data. In other words,
we create separate environments in which to esti-
mate and test the model, thereby creating conditions
similar to out-of-sample forecasting.

To recap, we estimate the following equations
on sample A:

T{”St _ ‘xj + o, + o, + o + /3Cit + )/Xit + SZ”St
(5)

TI™ = o + oy + & + o + PEi + yXie + € (6)

T = & + @y + o + o+ BVig + yXi + &
(7)

where i indexes the (granted) priority patent, our
unit of analysis, and T denotes the duration of the
patent, and the ¢ error term. In each model, we
control for fixed effects for the technological field
j, the inventor country n, the applicant type s and
the year of application t.>' Equation (5) uses Cj;,
the number of citations by the fifth year, along
with a vector of control variables, X, such as the
number of inventors in the patent, the patent
portfolio size of the assignee associated with the
patent, and the number of claims in the patent, to
predict duration T. Equation (6) uses Fj;, the raw
family size (i.e., simple counts of countries in the

2 ppplicant types are company, individual, government and non-profit, and universities.



family), instead of C, to help predict T, and
Equation (7) uses Vi, the GDP-weighted family
size measure, to help predict T.

We then obtain the following ‘fitted’ equations:

T/™ =&+ &y + & + & + BCy + 7Xi (8)
T{_’”St =&+ + o+ & + BFit +9Xie  (9)

TI™ =&+ + & + & + BVie + 7Xie  (10)
and apply them to the dataset, sample B. That is,
using the estimated «'s, f°s and ‘s from sample A,
we plug in the data for C, F, V and X from sample
B to generate predicted values T and compare them
to the actual values of duration T in sample B.

As measures of forecast accuracy, we use two
kinds. First, the Root Mean Square Percentage Error:

2

T, — T

T

1 N
RMSPE = , | =
N

where N is the sample size of sample B. The i
subscript refers to the i patent in sample B (with
other subscripts suppressed to avoid clutter). This
gives us the average forecast errors (T; — T}) as
a percentage of the actual value.

Another measure of forecast accuracy is Theil’s
inequality coefficient (the Ul version):

VASY, (@ -1y

LN (T + AN (1)

where U = 0 if there is a perfect fit. Again, for
robustness, we will repeat the entire exercise by
reversing sub-samples: using sample A for estima-
tion and sample B for prediction. For further tests
of robustness, we will change the dependent vari-
able of interest from duration to forward citations,
and determine how well the ex-ante GDP-
weighted family size measure of a priority patent
predicts the citations that a patent will receive in
five years’ time and compare that to the ability of
a patent’s duration to predict the number of cita-
tions it receives in the first five years.

U =
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V. Results

Our first ‘horse race’ test involves predicting the
duration of patents, and the second involves predict-
ing the citations received. To control for the many
unobservable factors, our estimation equations
include a full set of source country fixed
effects, year fixed effects, applicant type fixed effects,
and technological field fixed effects. These fixed
effects should capture differences in technologies,
organizations, policy regimes, patenting costs and
research productivity shifts over time, among others.

Forecasting

Table 2 reports on the fitted equations for predicting
the duration of patents. The first four models were
estimated using the data in sample A, and the last
four models using sample B. Recall that we use the
estimated equations from one dataset to perform
out-of-sample forecasting on the other dataset.

In each table, columns 1 and 5 show the model
without any of the key patent value indicators of
interest, such as family size or GDP-weighted family
size. We refer to this as the base case. The other
columns include a patent value indicator of interest,
one by one. If it were the case that the base case
models predict the best, this would cast doubt on the
usefulness of our indicators of patent value. As Table
2 shows, the coefficient estimates of the patent indi-
cators — citations received in the first five years,
family size and GDP-weighted family size — are all
statistically significant at the 1% level. They indicate
that patents that are relatively more heavily cited and
have wider geographic coverage, particularly in large
markets, tend to be more valuable in terms of being
longer-lived (or not letting them lapse too soon by
not renewing their patent rights). The control vari-
ables are generally positive influences. For example,
patents with more claims tend also to be longer-lived
and thus revealed to be more valuable. Patents with
longer duration are also associated with more inven-
tors and larger patent portfolios.

Table 3 contains the results of the ‘horse race’
tests. It summarizes the performances of the various
patent value indicators at forecasting patent dura-
tion using the two measures of forecast accuracy
discussed earlier: the root mean square percentage
error (RMSPE) and Theil’s U. Panel (i) reports on
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Table 2. Regression model for predicting duration.

Dependent Variable:In (Duration)

Sample A Sample B
Split Sample (M ) (3) 4 (5) (6) @) (€))
Pat Portfolio Size 0.0323*** 0.0319%** 0.0319%** 0.0033*** 0.0315%** 0.03171%** 0.0309%** 0.0027%**
(0.0003) (0.0003) (0.0003) (0.0002) (0.0003) (0.0003) (0.0003) (0.0002)
No. of Inventors 0.07071%** 0.0688*** 0.0417%** 0.0318*** 0.0707%** 0.0695%** 0.0422%** 0.0325%**
(0.0008) (0.0008) (0.0008) (0.0006) (0.0008) (0.0008) (0.0008) (0.0006)
No. of Claims 0.1235%** 0.1196*** 0.1046*** 0.0070%** 0.1244%** 0.1207%** 0.1054%** 0.0076%**
(0.0009) (0.0009) (0.0008) (0.0005) (0.0009) (0.0009) (0.0008) (0.0005)
Citations, 1st 5 yrs. 0.0143%** 0.0139%**
(0.0005) (0.0005)
Family Size 0.2216%** 0.2217%**
(0.0010) (0.0010)
Weighted Fam 0.0836%** 0.0836%**
(0.0001) (0.0001)
Observations 677,247 677,247 677,247 677,247 677,676 677,676 677,676 677,676
Adj R-squared 0.971 0.972 0.974 0.984 0.971 0.972 0.974 0.984
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
Source country, year, sector, and technological field fixed effects are included.
Table 3. Predicting duration: measures of forecast accuracy.
_ 0 _@ G @
Base Case
Additional (No Value Citations Family Weighted
RHS Variables: Indicators) 1st 5 years Size Family Size
i. Using estimates from sample A to predict duration in sample B
RMSPE 0.188 0.188 0.180 0.153
- Ratio to Weighted Fam 1.226 1.225 1.174 1.000
THEIL U 0.085 0.085 0.081 0.064
- Ratio to Weighted Fam 1.330 1.328 1.264 1.000
ii. Using estimates from sample B to predict duration in sample A
(5 (6) (7) (8)
RMSPE 0.188 0.188 0.180 0.154
- Ratio to Weighted Fam 1.220 1.219 1.168 1.000
THEIL U 0.085 0.085 0.081 0.064
- Ratio to Weighted Fam 1.330 1.328 1.264 1.000

RMPSE denotes Root Mean Squared Percentage Error and THEIL U is Theil's measure of forecast accuracy. Each column should correspond to the column in
Table 2 showing the estimated model. Columns 1, 5 show the forecast accuracy associated with not using any of the patent value indicators. Columns 2-4
and 6-8 show the accuracies associated with adding one of the indicators shown.

the use of the estimated model from sample A to
predict duration in sample B, and panel (ii) shows
the reverse. For each of these panels, the two differ-
ent forecast accuracy values are reported, and these
values are also normalized with respect to the fore-
cast accuracy value associated with the GDP-
weighted family size measure, which is shown in
column 4 and column 8. This helps us better see
how the other patent value indicators perform rela-
tive to our proposed GDP-weighted family size mea-
sure. Essentially, column 1 of panel (i) corresponds
to the model in column 1 of Table 2, and so on for
columns 2-4 in the same panel. Column 5 of panel
(ii) corresponds to the model in column 5 of Table 2,
and so on for columns 5-8 in this panel.

Based on both forecast accuracy criteria, the
model which uses the GDP-weighted family size
variable predicts the best in terms of yielding the
lowest forecast errors. In columns 1-4 of panel (i),
the RMSPE criterion shows that the base case
model has a forecast error of 18.8%; that is, the
deviation between actual and predicted is 18.8% of
the actual duration value. Meanwhile the model
which utilizes the GDP-weighted family size has
a forecast error of 15.3%. Thus, the model which
incorporates GDP-weighted family size performs
almost 22.6% better than the base case model (see
the ratio of the RMSPE of the base case to that of
the weighted family size in column 4). It also
performs 22.5% better than a model which utilizes



forward citations, and 17.4% better than one using
the simple (unweighted) family size. The Theil
U criterion is in agreement. The GDP weighted
family size variable predicts patent duration more
accurately than forward citations by 32.8% (see
column 2). The family size count is only margin-
ally more accurate than forward citations at pre-
dicting duration (see column 3). The weighted
family count measure improves forecast perfor-
mance (according to the Theil U) by 26.4% over
the simple count measure. While the advantage of
patent family size is its simplicity - namely, it is
easy to observe and apply - it ignores the market
sizes of the countries in the patent family and thus
does not have the predictive power of the
weighted measure. Throughout panel (i), the
weakest performance at predicting duration is
the base case model which does not use any of
three patent value indicators of interest.

The results in panel (ii) which come from rever-
sing the roles of the sub-samples (i.e., using esti-
mates from sample B to predict duration in
sample A) are practically identical (to the first
three decimal points). Hence, this split sample
serves as a useful robustness check. Of course,
the forecasting models could all be improved by
combining the various patent indicators, such as
citations and GDP-weighted patent family size,
and entering them all in the forecasting equations.
But our objective was to conduct a ‘horse race’ test
and so it was more appropriate to demonstrate the
usefulness by entering these patent indicators one
at a time. The more important reason, however, is
that in practice, citations are not observed ex-ante.
At the time of a patent priority application, we do
not observe reliable citation counts until some
years later. We do, nevertheless, observe the family
size and the GDP levels of countries in the patent
family around the time of priority filing. Hence,
a chief advantage of the GDP-weighted patent
family size measure is that it utilizes information
that is available relatively earlier, whether at the
time of application or grant.

The horse race exercise we conducted focused
on patent duration as the benchmark for patent
value. We now turn to patent citations as the
benchmark of value and see how the GDP-
weighted family size measure performs against
duration at predicting citations received by
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a patent in the first five years. The significance is
to show that the GDP-weighted family size mea-
sure has broader influences on patent value
beyond patent renewal behaviour, since duration
is also an imperfect measure of value; for example,
duration can be longer if the costs of renewing
patents are lower, holding changes in the benefits
or value of patents constant.

When forecasting citations, we need to account
for the potential endogeneity between duration
and citations during the time the patent is in
force. Even though a patent can be cited long
after the right expires or lapses, duration and
citations may be correlated during the lifetime of
a patent, since the more time passes, the more
citations the patent may receive. For instance,
more citations are likely to have been received in
a patent’s fifth year of life than in its first year (and
the same patent may keep on receiving citations
long after it expires). Our citation counts are
based on a fixed duration. We have effectively
stopped the citations ‘clock’ at the fifth year.
Thus, to avoid possible simultaneity between cita-
tions and duration, we focus on the sample of
patents that lived longer than five years. Hence,
we measure the ability of the duration of patents
that lived longer than five years to explain cita-
tions received in the first five years. This way, we
determine if the eventual duration of the patent
signals high patent value in terms of the number
of cites it receives in the first five years, and
compare the predictive ability of duration against
the forecast performance of family size and GDP-
weighted family size.

Table 4 shows estimates of the models for pre-
dicting forward citations. Note the reduction in
the sample size as a result of dropping patents that
only lived for five years or less. The first four
columns show estimates using sample A and the
last four using sample B. The RHS variables are
statistically significant determinants; however,
family size has a negative association with forward
citations. Compared to the models for predicting
duration, the models for predicting forward cita-
tions have a lower goodness of fit. Apparently,
a lot of noise in patent citations exist that is hard
to capture. With that in mind, we summarize the
measures of forecast accuracy for the citations
models in Table 5. As anticipated the forecast
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Table 4. Regression model for predicting citations received in first 5 years.

Dependent Variable: In (Citations)

Sample A Sample B
Split Sample M ) (3) 4 (5) (6) @) 8)
Pat Portfolio Size 0.0291%** 0.0258%** 0.0293%*** 0.0127%** 0.0282%** 0.0250%** 0.0284%** 0.01271%**
(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008)
No. of Inventors 0.0912%** 0.0841%** 0.1006*** 0.0695%** 0.0920%** 0.0849%** 0.1017%** 0.0705%**
(0.0023) (0.0024) (0.0024) (0.0023) (0.0023) (0.0024) (0.0024) (0.0023)
No. of Claims 0.2690%** 0.2561%*** 0.2752%** 0.2038%*** 0.2693%*** 0.2564%** 0.2757%*** 0.2045%**
(0.0019) (0.0019) (0.0019) (0.0019) (0.0019) (0.0019) (0.0019) (0.0019)
Duration 0.1047%*** 0.1032***
(0.0035) (0.0035)
Family Size —0.0729*** —0.0753***
(0.0025) (0.0025)
Weighted Fam 0.0467%** 0.0463***
(0.0004) (0.0004)
Observations 661,627 661,627 661,627 661,627 662,089 662,089 662,089 662,089
Adj. R-squared 0.777 0.777 0.777 0.781 0.778 0.778 0.778 0.782
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
Source country, year, sector, and technological field fixed effects are included.
Table 5. Predicting citations: measures of forecast accuracy.
o m (2) (3) @4
Additional Base Case (No Value Family Weighted
RHS Variables: Indicators) Duration Size Family Size
i. Using estimates from sample A to predict duration in sample B
RMSPE 0.672 0.671 0.672 0.666
- Ratio to Weighted Fam 1.009 1.008 1.009 1.000
THEIL U 0.298 0.298 0.298 0.293
- Ratio to Weighted Fam 1.019 1.018 1.016 1.000
ii. Using estimates from sample B to predict duration in sample A
(5 (6) (7) (8)
RMSPE 0.673 0.672 0.673 0.667
- Ratio to Weighted Fam 1.009 1.008 1.009 1.000
THEIL U 0.299 0.298 0.298 0.293
- Ratio to Weighted Fam 1.019 1.018 1.016 1.000

RMPSE denotes Root Mean Squared Percentage Error and THEIL U is Theil's measure of forecast accuracy. Each column should correspond to the column in
Table 4 showing the estimated model. Columns 1, 5 show the forecast accuracy associated with not using any of the patent value indicators. Columns 2-4
and 6-8 show the accuracies associated with adding one of the indicators shown.

errors are larger, according to both the RMSPE
and Theil U criteria. Nevertheless, the GDP-
weighted family size variable performs relatively
best at predicting future citations, including better
than the duration of patents at predicting citations
received.

Next, as a robustness check, we evaluate the use of
a triadic patent indicator in a forecasting model. The
triadic variable equals one if the patent included
filings in the U.S. Patent and Trademark Office
(USPTO), European Patent Office (EPO) and
Japanese Patent Office (JPO), and zero otherwise.
Right away, there are some issues with this indicator.
Like the simple family count, it does not take into
account market size. For example, triadic patents
vary in terms of the other countries (or offices) in
which the patent was filed; some might only have

been filed in those three offices (EPO, JPO and
USPTO) while others might have also been filed in
relatively large markets like Canada, Australia,
S. Korea, China and Brazil, and others only in rela-
tively smaller markets like Ghana, Egypt and the
Philippines. Furthermore, there might be differences
in where the patent might have been validated in the
EPO member states. Yet, another consideration is
that the GDP value of a triadic patent (even holding
the composition of countries constant) can vary over
time, as GDP varies over time. Thus, the Triadic
dummy variable does not capture all the market
nuances.

Table 6 shows some investigations of the use of the
Triadic dummy variable. Part (i) shows some sample
statistics between patents that are part of a triadic
patent family and those that are not. Triadic patents
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Patent Citations Family GDP-weighted No. of Patent Portfolio
Families Duration st 5 yrs. Size Fam Size Inventors Size No. of Claims
(i) Sample Means
Triadic 13.8 9.0 7.2 121 2.6 46.6 12.2
Non-Triadic 121 20.4 5.2 103 2.5 79.8 14.5
(i) Model Estimates
Dep. Var — Duration Citations 1st 5 yrs.
Sample A Sample B Sample A Sample B
Pat Portfolio Size 0.0343%*** 0.0240%*** 0.0335%** 0.0227%***
(0.0003) (0.0008) (0.0003) (0.0008)
No. of Inventors 0.0627%** 0.1092%** 0.0634*** 0.1103***
(0.0008) (0.0022) (0.0008) (0.0022)
No. of Claims 0.1181%** 0.2826*** 0.1197%*** 0.2829***
(0.0009) (0.0018) (0.0009) (0.0018)
Triadic Patent 0.2449%** —0.6523%** 0.2422%** —0.6584***
(0.0013) (0.0032) (0.0013) (0.0032)
No. Observ. 677,247 677,247 677,676 677,676
Adj. R-sq. 0.973 0.790 0.973 0.791
Forecast Accuracy of Model relative to GDP-weighted Family Size:
in — Sample B Sample A Sample B Sample A
RMPSE 1.205 1.197 1.005 1.004
THEIL U 1.289 1.288 1.001 1.003

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Source country, year, sector, and technological field fixed effects are included.

have longer durations, larger family sizes (simple or
weighted by GDP), but non-triadic patents have on
average received far more citations, are associated
with larger patent portfolios, and contain more
claims. Thus, triadic patents do not dominate non-
triadic patents across indicators of patent value. Part
(ii) shows the regression results and the forecast
accuracy statistics (relative to the GDP-weighted
family size measure). What is notable here is that in
one split sample, triadic patents are positively asso-
ciated with duration and forward citations, but in the
other sample, they are negatively associated with
those variables. Thus, the Triadic variable is not
a consistent determinant in the forecasting model.
In all cases, the root mean square percentage errors
and the Theil U values are higher when the forecast-
ing models include the triadic variable than when
they include the GDP-weighted family size variable.
For predicting duration, even the simple family size
measure would outperform the triadic patent variable
(which can be seen by comparing the relative forecast
accuracies in Table 3).

Select samples

This section examines how the forecasting results
hold up if we drill down to further sub-samples of
the dataset. First, we re-estimated the models (as
shown earlier in Tables 2 and 4) by different types

of applicants. We then repeated the forecasting
exercises. The results for predicting duration are
shown in Table 7. To conserve space, we only
report the forecast accuracy measures. The results
at the disaggregated level are remarkably similar to
those for the pooled sample. For example, the
models with the GDP-weighted patent family
size variable produce the lowest RMSPE; that is,
the deviation of predicted duration from actual
duration is between 15% and 16% of the actual
duration, whether we perform the out-of-sample
forecasting in sample A or B. In the pooled sample
(recall Table 3), the forecast error was 15.3% or
15.4%. The other models, using either raw family
size or forward citations, and the base case model
all perform worse; by the RMPSE criterion, the
other models produce forecast errors that are
more than 15% greater than the errors generated
by the model with the weighted family size vari-
able, and the base case model produces errors at
least 20% greater. By the Theil U criterion, the
other models produce forecast errors that are at
least 25% greater than those of the model with the
weighted family size variable. Overall, the GDP-
weighted family size measure dominates the fore-
casting outcomes for all applicant types, but it
performs relatively best for company patents.
Table 8 shows the results for predicting cita-
tions by applicant sector. Again, it appears to be
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Table 7. Predicting duration: forecast accuracy by applicant type.

Sample A estimates to Predict in sample B

Sample B estimates to Predict in sample A

(1) ) 3)

4 m @) 3) (4)

Citations Weighted Citations Weighted
Forecast Base First Family Family Base First Family Family
Sector Accuracy Case 5 years Size Size Case 5 years Size Size
Company RMSPE 0.189 0.189 0.181 0.155 0.189 0.189 0.181 0.156
Ratio to Col. 5 1.219 1.217 1.165 1.000 1.210 1.208 1.157 1.000
THEIL U 0.086 0.085 0.082 0.065 0.086 0.085 0.082 0.065
Ratio to Col. 5 1317 1314 1.262 1.000 1.315 1.312 1.260 1.000
Individual RMSPE 0.196 0.195 0.188 0.157 0.197 0.195 0.188 0.157
Ratio to Col. 5 1.248 1.242 1.197 1.000 1.249 1.240 1.194 1.000
THEIL U 0.086 0.086 0.082 0.066 0.086 0.086 0.082 0.066
Ratio to Col. 5 1312 1311 1.253 1.000 1.315 1.312 1.254 1.000
Gov Non-Profit RMSPE 0.194 0.193 0.189 0.156 0.194 0.193 0.189 0.158
Ratio to Col. 5 1.239 1.237 1.208 1.000 1.230 1.227 1.199 1.000
THEIL U 0.089 0.089 0.084 0.067 0.088 0.088 0.084 0.067
Ratio to Col. 5 1324 1324 1.259 1.000 1323 1323 1.258 1.000
Universities RMSPE 0.196 0.196 0.188 0.157 0.196 0.196 0.188 0.156
Ratio to Col. 5 1.249 1.249 1.203 1.000 1.252 1.252 1.202 1.000
THEIL U 0.097 0.097 0.091 0.069 0.097 0.097 0.092 0.069
Ratio to Col. 5 1.406 1.407 1.328 1.000 1.402 1.403 1.320 1.000

Number of observations: Company (1,018,094), Individual (20,809), Government & Non-Profits (297,668), and Universities (18,355)

Table 8. Predicting citations first 5 years: forecast accuracy by applicant type.

Sample A estimates to Predict in sample B

Sample B estimates to Predict in sample A

(1) ) 3)

4 m @ 3) (4)

Weighted Weighted
Forecast Base Family Family Base Family Family
Sector Accuracy Case Duration Size Size Case Duration Size Size
Company RMSPE 0.641 0.641 0.643 0.634 0.641 0.641 0.643 0.634
Ratio to Col. 5 1.010 1.010 1.013 1.000 1.011 1.010 1.013 1.000
THEIL U 0.310 0.309 0.308 0.303 0.310 0.309 0.308 0.303
Ratio to Col. 5 1.023 1.020 1.017 1.000 1.023 1.020 1.017 1.000
Individual RMSPE 0.931 0.928 0.933 0.902 0.927 0.924 0.930 0.900
Ratio to Col. 5 1.032 1.029 1.035 1.000 1.030 1.027 1.034 1.000
THEIL U 0.295 0.294 0.295 0.288 0.295 0.294 0.295 0.288
Ratio to Col. 5 1.024 1.021 1.023 1.000 1.023 1.020 1.023 1.000
Gov Non-Profit RMSPE 0.688 0.694 0.692 0.674 0.709 0.713 0.711 0.699
Ratio to Col. 5 1.021 1.030 1.027 1.000 1.014 1.020 1.017 1.000
THEIL U 0.305 0.303 0.305 0.298 0.302 0.301 0.302 0.296
Ratio to Col. 5 1.021 1.017 1.021 1.000 1.019 1.017 1.020 1.000
Universities RMSPE 0.898 0.903 0.872 0.946 0.898 0.901 0.868 0.951
Ratio to Col. 5 0.949 0.954 0.921 1.000 0.944 0.947 0.913 1.000
THEIL U 0.301 0.300 0.299 0.298 0.302 0.302 0.300 0.299
Ratio to Col. 5 1.009 1.009 1.004 1.000 1.007 1.007 1.000 1.000

Number of observations: Company (1,018,094), Individual (20,809), Government & Non-Profits (297,668), and Universities (18,355)

harder to forecast the number of citations a patent
will receive within the first 5 years. The RMSPE
and Theil U take on relatively high values. The
GDP-weighted family size measure performs rela-
tively best at predicting citations except among
university patents. Here, the simple family size
measure performs relatively best and the GDP-
weighted family size measure relatively worst. To
speculate, it might be that the GDP-weighted
family size variable is more suitable for predicting
the citations of commercially oriented innovations
rather than those of the academic-oriented ones.
The results are qualitatively the same whether we

use sample A or B for the out-of-sample
forecasting.

Next, we break the sample down by technological
fields. We tested the predictive ability of the GDP-
weighted family size to forecast the patent duration of
different technologies and found that this variable
helps produce the lowest RMSPE and Theil U values
uniformly for all 35 technological fields. In Table 9, we
report just a select few fields, such as Electrical
Machinery, Telecommunications, Computer
Technology,  Biotechnology, = Pharmaceuticals,
Medical Technology, Chemical Engineering and
Transportation. These fields represent diverse



industrial innovative areas, from the life sciences, such
as biotech and pharm, to capital intensive sectors such
as  transportation and telecommunications.
According to the results, the simple family size mea-
sure predicts duration less accurately than the
weighted measure but more accurately than forward
citations. The differences in forecast accuracy between
the model with forward citations and the base case
model are marginal. These results hold in both sub-
samples of the data. Furthermore, the relative forecast
performances by technological fields are similar to
those we found for the pooled sample (recall Table 3).

The results, however, are mixed for predicting
citations, as shown in Table 10. To avoid clutter,
Table 10 merely reports which included indicator
is associated with the lowest forecast errors. Thus,
for each technological field, there are four out-
comes, depending on the two forecast accuracy
criteria — RMSPE or Theil U - and the two sub-
samples — A or B. For 14 of the 35 technological
fields, forecasting models that include the GDP-
weighted patent family size measure yield uni-
formly the highest forecast accuracy, ie., in all
four outcomes. These fields include Chemical
Engineering, Surface Technology, Electrical
Machinery and Environmental Technology. For
other technological fields, one forecast criterion
might favour a model that includes family size or
duration, while the other criterion favours a model

Table 9. By select technological field: predicting duration.
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with  GDP-weighted  family  size  (e.g.,
Semiconductors, Macromolecular Chemistry and
Polymers, the Analysis of Biological Materials,
Pharmaceuticals and Biotechnology). For Medical
technology and Microstructures and
Nanotechnology, there are instances where the
base case model dominates in terms of forecasting
citations received in the first five years. But for the
most part, the GDP-weighted family size is the
variable that appears most frequently as contribut-
ing to the lowest forecast errors. Thus, while the
evidence is not as strong as it was for predicting
duration, the GDP-weighted family size measure
stands out as the leading predictor of forward
citations among the different technological fields.

Applications

This paper focused on constructing GDP-
weighted patent family size and testing their abil-
ity to predict which patents will become valuable.
The next step is to apply these patent valuation
measures in empirical research. As alluded to in
the introduction, the GDP-weighted patent family
size measure could, for example, be used to assess
the productivity of R&D, the outcomes of patent
reform, or the quality of technology transfers. We
leave these kinds of applications for future scho-
larly work. In this section, we use our constructed

Using sample A’s estimates
to predict in sample B

Using sample B’s estimates
to predict in sample A

Forecast m 2 3) 4) m ) 3) (4)
Accuracy Citations Weighted Citations Weighted
Tech (Ratio to Base First Family Family Base First Family Family
Field col. 4) Case 5 years Size Size Case 5 years Size Size
Electrical RMSPE 1.269 1.267 1.220 1.000 1.268 1.266 1.219 1.000
Mach. THEIL U 1.380 1.378 1.299 1.000 1.380 1.378 1.300 1.000
Telecomm RMSPE 1.209 1.207 1.162 1.000 1.213 1.211 1.167 1.000
THEIL U 1.385 1.383 1.304 1.000 1.386 1.386 1.305 1.000
Computer RMSPE 1.211 1.211 1.170 1.000 1.210 1.211 1.170 1.000
Tech THEIL U 1.406 1.406 1.323 1.000 1.406 1.406 1.325 1.000
Biotech RMSPE 1.207 1.209 1.118 1.000 1.210 1.212 1.120 1.000
THEIL U 1.368 1.368 1.301 1.000 1.364 1.363 1.295 1.000
Pharma. RMSPE 1.218 1.218 1.119 1.000 1.214 1.214 1.120 1.000
THEIL U 1.364 1.364 1.332 1.000 1.361 1.361 1.334 1.000
Medical RMSPE 1.257 1.261 1.184 1.000 1.258 1.262 1.186 1.000
Tech. THEIL U 1.381 1.383 1.306 1.000 1.384 1.386 1.310 1.000
Chemical RMSPE 1.283 1.282 1.205 1.000 1.281 1.281 1.204 1.000
Engineer. THEIL U 1.378 1377 1312 1.000 1.382 1.379 1314 1.000
Transp. RMSPE 1.286 1.283 1.246 1.000 1.287 1.284 1.244 1.000
THEIL U 1.354 1.354 1.274 1.000 1.362 1.361 1.277 1.000

The combined sample sizes of samples A and B are as follows: Electrical Machinery 86,806;
Telecommunications 42,537; Comp. Tech 79,125; Biotechnology 25,011; Pharmaceuticals 38,866;
Chemical Engineering 37,642; Medical Technology 52,777; and Transportation 68,795.
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Table 10. By select technological field: predicting forward citations.

From Sample A to Predict in B

From Sample B to Predict in A

Sample
Technological Field RMSPE THEIL U RMSPE THEIL U Size
1 Electrical Mach. Weighted Fam Weighted Fam Weighted Fam Weighted Fam 86,806
2 Audio Visual Family Size Weighted Fam Family Size Weighted Fam 75,683
3 Telecomm Family Size Weighted Fam Family Size Weighted Fam 42,537
4 Digital Com. Family Size Weighted Fam Family Size Weighted Fam 26,017
5 Basic Comm Proc. Family Size Weighted Fam Family Size Weighted Fam 21,587
6 Computer Tech Family Size Weighted Fam Family Size Weighted Fam 79,125
7 IT Management Family Size Weighted Fam Family Size Weighted Fam 3,941
8 Semi-conductors Family Size Weighted Fam Family Size Weighted Fam 54,628
9 Optics Family Size Weighted Fam Family Size Weighted Fam 68,955
10 Measurement Family Size Weighted Fam Family Size Weighted Fam 63,227
1 Analy. Bio Mat Duration Weighted Fam Duration Weighted Fam 9,227
12 Control Family Size Weighted Fam Family Size Weighted Fam 20,692
13 Medical Tech Weighted Fam Weighted Fam Base Case Weighted Fam 52,777
14 Organic Chem. Family Size Weighted Fam Family Size Weighted Fam 59,890
15 Biotech Family Size Weighted Fam Duration Weighted Fam 25,011
16 Pharmaceuticals Duration Weighted Fam Family Size Weighted Fam 38,866
17 Macro Chem. Family Size Family Size Family Size Family Size 40,448
18 Food Chem. Weighted Fam Family Size Weighted Fam Family Size 8,025
19 Basic Mat. Chem. Weighted Fam Weighted Fam Weighted Fam Family Size 40,885
20 Metallurgy Weighted Fam Weighted Fam Weighted Fam Weighted Fam 28,789
21 Surface Tech. Weighted Fam Weighted Fam Weighted Fam Weighted Fam 26,326
22 Micro. Nanotech Base Case Weighted Fam Family Size Weighted Fam 1,048
23 Chem. Eng. Weighted Fam Weighted Fam Weighted Fam Weighted Fam 37,642
24 Environment Weighted Fam Weighted Fam Weighted Fam Weighted Fam 16,561
25 Handling Weighted Fam Weighted Fam Weighted Fam Weighted Fam 40,033
26 Mach. Tools Weighted Fam Weighted Fam Weighted Fam Weighted Fam 37,316
27 Engines ... Weighted Fam Weighted Fam Weighted Fam Weighted Fam 48,511
28 Textiles ... Weighted Fam Weighted Fam Weighted Fam Weighted Fam 44,587
29 Oth. Special Mach. Weighted Fam Weighted Fam Weighted Fam Family Size 43,235
30 Thermal Proc. Weighted Fam Weighted Fam Weighted Fam Weighted Fam 15,963
31 Mechan. Elem. Weighted Fam Weighted Fam Family Size Weighted Fam 50,588
32 Transportation Weighted Fam Weighted Fam Weighted Fam Weighted Fam 68,795
33 Furniture, Games Weighted Fam Weighted Fam Weighted Fam Weighted Fam 23,168
34 Other Consumer Weighted Fam Weighted Fam Weighted Fam Weighted Fam 22,544
35 Civil Eng. Weighted Fam Weighted Fam Weighted Fam Weighted Fam 31,493

The table reports the indicator with the best forecast accuracy under the given sub-sample and accuracy measure. Weighted Fam is short for weighted

family size. The sample size is the sum of samples A and B.

measures to provide some trends in patent value
over time and across countries and technological
fields. This is of interest in and of itself as scholars
debate the optimal design of patent systems (see
Bessen and Maurer, 2009; Baker, Jayadev, and
Stiglitz 2017).

Figures 3 and 4 present trends in the mean
patent value by inventor country and select tech-
nological fields, respectively. For these figures, we
did not restrict the sample to patents that lapsed,
which we needed to do for purposes of our
empirical testing. If we had plotted these figures
with only lapsed patents, the graphs would show
a steep decline in mean value during the 2010--
2016 period. This is because those patents that
lapsed during that period had short lives and
were deemed less valuable. Here, we bring back
all patent grants, lapsed or not, and calculated the
market value (in terms of GDP) of the patent
family at the time of application.

We observe a steady rise in patent value, as
measured by our approach, from the early 1980s
to around 2008. At that point, the average value
for the U.S. falls slightly but continues to grow.
The growth in average patent value for Japan
slows after 2008 but does not exhibit
a significant decline. However, for the EPO mem-
ber states like Germany, France and the U.K,, the
average patent value falls, especially in France
where its 2014 value is about what it was in
2002. However, average patent value appears to
rebound in the U.K. and France in 2015, but not
in Germany.

Turning to the technological fields, we observe
steady growth in the average value of electrical
machinery, telecommunication and computer
technology patents. In the life sciences fields, like
pharmaceuticals and biotechnology, the mean
patent value grows more quickly during the
2000s, but late in that decade, the mean values
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Figure 3. Trends in GDP-weighted family value, by inventor country.
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Figure 4. Trends in GDP-weighted family value, by select technology fields.

begin a declining trajectory till about 2013. It
would be useful to study the determinants of
these differing growth paths of patent value by
technological field, whether they are driven by
international trade agreements, technology poli-
cies, or shifts in innovation potential.

Of course, other developments may be occur-
ring as well, such as shifts in the geographic
coverage of countries in a patent family (due
to trends in FDI) or in the costs of filing or
maintaining a patent right. Shifts in geographic

coverage can be accounted for when measuring
trends in patent value; for example, we can
construct family values per country in the patent

. . GDP—weighted family size R .
family; that is, T , which is

y Size

essentially the ratio of Equation (3) to
Equation (1), and can be readily constructed
using the data we have. This approach can be
useful if the sample consists only of lapsed
patents. Figures 5 and 6 show the path of the
ratio during the sample period. The interpreta-

tion of the ratio is the average market size of the
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Figure 6. Trends in family value relative to family size, by select technology fields.

patent family, or the average GDP of the coun-
tries in the family.

Figure 5 shows that the rapid growth in mean
patent values is tempered. The average market size
of patent families appears stable until the 2000s,
when they mostly decline. Figure 6 shows that for
life science patents, the average market size experi-
ences a temporary spike during the early 2000s,
possibly reflecting a productivity boost that was
initially concentrated in only a few markets. Again,
these and other developments warrant further

research, and could contribute to normative debates
on the welfare effects of patent protection.

VI. Conclusion

In this paper, we constructed an indicator of patent
value based on a patent’s family size and composi-
tion, weighting each country in the family by its
market size (namely GDP). This approach over-
comes the disadvantage of existing measures of
patent valuation which yield information about



patent value after the fact; for example, after
a patent’s record of citations has been observed
over a period of time, or after a patent right has
been observed to lapse or be renewed at a later
point in time. To the extent that our GDP-
weighted patent family measure is a good ex-ante
indicator of patent value, then ex-post, patents with
greater GDP-weighted patent family values should
live longer and have greater citations (over some
specified period of time). This was the motivation
for conducting the forecasting exercises; namely, to
see whether our measure of interest can predict the
valuable patents that we would observe ex post. To
do this, we had split the sample into two groups,
estimated a forecasting model over one group, and
then used the other group, treating it as another
draw of data, to conduct out-of-sample forecasts.
We then reversed the situation, estimating the
model over the latter group and conducting fore-
casting exercises with the first group. Our main
result is that our measure of patent valuation out-
performs the citations method at predicting patent
duration and renewal, and out-performs patent
duration at predicting citations, at least for the
pooled sample. And it improves upon models that
do not use any indicator of patent value or models
that use a close substitute like an indicator for triadic
patent families.

We also repeated the analysis by different tech-
nological fields and different applicant types. For
predicting duration, models that incorporate the
GDP-weighted patent family variable performs
best across all fields and applicant sectors. For
predicting forward citations, the models with the
GDP-weighted patent family variable performs
quite well in many different fields of technology,
but not for all fields, such as patents for Macro-
molecular Chemistry and Polymers, nor for uni-
versity patents. The evidence overall demonstrates
the usefulness of the GDP-weighted family size
measure as an ex-ante method of patent valuation.

Of course, this is not to say that ex-post valua-
tion matters less. In many cases, especially for
policy evaluation, it is useful to know whether
patents granted in earlier periods turned out to
be valuable and to provide feedback on the poli-
cies that gave rise to them (or failed to). However,
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where anticipating ‘value’ is crucial for making
current resource allocation decisions, the valua-
tion method discussed here serves to help mini-
mize forecast errors.

But how well the method serves as an ex-ante
indicator depends on the timeliness of the infor-
mation needed to construct the measure. For our
approach, we primarily need to know the coun-
tries covered by the patent family and the real
value of the GDP of those countries at the time
of application of the priority filing. Under the
Paris Convention, after a first application is filed
in one of the member states, the subsequent filings
for the same invention can be made in other
member states within a year and be regarded as
if they were filed at the same time as the first
application. In this case, there would be a 1-year
lag before the country composition of the patent
family can be fully known. But with more com-
plex-structured patent families, the timeliness of
information on country coverage would be
a bigger issue as the lags between the first applica-
tion and later filings in other member states would
be much longer.

As extensions to this paper, the GDP-weighted
patent family size measure can be used to create
indicators of patent values by industry and/or
country, and they in turn can be applied to studies
on productivity, R&D, or technology diffusion.
We have already provided some preliminary
applications of the method for purposes of analys-
ing the trends in patent value by country and
technological field. It will be useful in future
work to study the effects of changes in the pro-
pensity to patent, which need not remain stable
over time. The GDP-weighted family size measure
may potentially fluctuate over time because of
shifts in the patenting strategies of firms. Thus,
the measure may be more useful if smoothing
techniques were applied to it (like a moving aver-
age adjustment or exponential smoothing).
Another exercise would be to test the valuation
method by relating patent licensing fees to the
market value of the patent’s family size. Future
work could also try to compute the market size
of patent families under a more extensive family
definition.”* As Martinez (2011) points out, about

2An extended definition seeks to consolidate all the direct and indirect priority linkages among the patent applications within a family.
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25% of extended priority patent families do not
overlap with the single first filing families, leading
to different counts of patent families as well as
different sizes of patent families.
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