Survey of Research

• Overview

• Background Trends

• Theories about Intellectual Property Rights (IPR)
 • Implications for Innovation, Technology Transfer, and Economic Development

• Empirical Evidence
 • Measurement Issues
 • Patents, Copyrights, and Trademarks
 • Lessons
Overview

• Rationale for IPR
 • Public Good (non-excludability, non-rivalry)
 • *Missing Markets problem*

• Globalization of IPR
 • Trade and Foreign Direct Investment (FDI) in IP goods/services
 • Strategic Trade
 • International Knowledge Spillovers

• Key Issues
 • How important are IPRs in technological progress?
 • *Complementary factors vs. Alternative factors*
 • Optimal IPR (i.e., balancing benefits & costs)?
 • Appropriate level for developing countries?
Context

- Demand (Consumers/Users)
- Production
- Resources
- Technology (Domestic & Foreign)
- Institutions (IPR)
Trends

Measures of Innovation and Technology Transfer over Time

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994-1996</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2003-2005</td>
<td>1.46</td>
<td>2.12</td>
<td>1.31</td>
<td>1.00</td>
<td>1.00</td>
<td>3.01</td>
<td>2.85</td>
</tr>
<tr>
<td>2010-2012</td>
<td>2.02</td>
<td>2.02</td>
<td>1.51</td>
<td>1.88</td>
<td>1.92</td>
<td>4.88</td>
<td>4.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994-1996</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2003-2005</td>
<td>3.31</td>
<td>5.45</td>
<td>1.77</td>
<td>1.00</td>
<td>1.00</td>
<td>2.93</td>
<td>3.84</td>
</tr>
<tr>
<td>2010-2012</td>
<td>21.82</td>
<td>12.71</td>
<td>3.56</td>
<td>3.27</td>
<td>2.91</td>
<td>8.42</td>
<td>14.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LATIN AMERICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994-1996</td>
<td>1.00</td>
<td>1.00</td>
<td>1.20</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2003-2005</td>
<td>1.59</td>
<td>3.37</td>
<td>1.50</td>
<td>1.00</td>
<td>1.00</td>
<td>3.04</td>
<td>2.73</td>
</tr>
<tr>
<td>2010-2012</td>
<td>2.44</td>
<td>4.28</td>
<td>2.31</td>
<td>2.48</td>
<td>2.34</td>
<td>8.24</td>
<td>7.13</td>
</tr>
</tbody>
</table>
Trends

- **Measures of Innovation and Technology Transfer Between Groups**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>n/a</td>
<td>n/a</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>South</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>n/a</td>
<td>n/a</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Latin Am</td>
<td>0.002</td>
<td>0.004</td>
<td>0.03</td>
<td>n/a</td>
<td>n/a</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>2003-2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>South</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.07</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Latin Am</td>
<td>0.002</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.01</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>2010-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>South</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.11</td>
<td>0.02</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Latin Am</td>
<td>0.003</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>0.16</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Trends

• Perceptions of Intellectual Property Enforcement
 • Global Competitiveness Report, various issues
Theories about IPRs

• North – South Models

• Resources in N allocated between R&D and manufacturing

• Effects of tighter Southern IPR on Northern innovation & tech transfer are conditional on (i) whether N engages in FDI & licensing in S; (ii) costs of imitation.
Theories about IPRs

- Nonlinearities

Rate of Innovation

Duration of IP Protection or Breadth of IP Protection

- Role of Competition/Rivalry; impact on follow-on innovation
Theories about IPRs

- Stages of Economic Development

 - Optimal IPR should vary with
 - Market Size
 - Innovative Capacity

- South’s optimal IPR < North’s optimal IPR

- Role of Utility Models (Petty Patents)
 - Reward adaptive, imitative innovations
 - Minor inventive activity as a stepping stone for major (future) innovations
 - China, S. Korea, Taiwan
Theories about IPRs

• Technology Transfer
 • Effect of IPR on TT depends on
 • Market Expansion Effect
 • Market Power Effect

• Effect of IPR on Composition of TT
 • Depends on Wages and Imitation Risks abroad
 • Possible sequence: Export → FDI → License

• Relevance of Composition of TT
 • Empirical Work (volume vs. switching effects)
 • Implications for employment, costs, and knowledge diffusion
 • Quality/Type of technologies transferred and purpose of FDI
Empirical Evidence

Framework:

• Regression Analysis

\[Y = \alpha + \beta X + \gamma Z + \text{error} \]

• \(Y \) = variable (outcome) of interest
• \(X \) = measure of IPR
• \(Z \) = vector of control variables
Index of Patent Rights

<table>
<thead>
<tr>
<th>Components</th>
<th>Description</th>
<th>Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Protection</td>
<td>Fraction of 20 years</td>
<td>1</td>
</tr>
<tr>
<td>Coverage</td>
<td>Fraction of subject matter protected</td>
<td>1</td>
</tr>
<tr>
<td>Enforcement Mechanisms</td>
<td>Fraction of available provisions</td>
<td>1</td>
</tr>
<tr>
<td>Membership in International Agreements</td>
<td>Fraction of relevant treaties, agreements, …</td>
<td>1</td>
</tr>
<tr>
<td>Restrictions</td>
<td>Fraction of restrictions not imposed</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Score 0 - 5
Quantifying IP Regimes

Index of Copyrights

<table>
<thead>
<tr>
<th>Components</th>
<th>Description</th>
<th>Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Percentage of Duration per type of copyrightable work</td>
<td>1</td>
</tr>
<tr>
<td>Usage</td>
<td>Degree of private use (e.g., fair use) not permitted</td>
<td>1</td>
</tr>
<tr>
<td>Enforcement Mechanisms</td>
<td>Fraction of available provisions</td>
<td>1</td>
</tr>
<tr>
<td>Membership in International Agreements</td>
<td>Fraction of relevant treaties, agreements, …</td>
<td>1</td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
<td>0 - 4</td>
</tr>
</tbody>
</table>

Index of Trademark Rights

<table>
<thead>
<tr>
<th>Components</th>
<th>Description</th>
<th>Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Fraction of permitted marks, or types thereof</td>
<td>1</td>
</tr>
<tr>
<td>Procedures</td>
<td>Fraction of available provisions</td>
<td>1</td>
</tr>
<tr>
<td>Membership in International Agreements</td>
<td>Fraction of relevant treaties, agreements, …</td>
<td>1</td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
<td>0 - 3</td>
</tr>
</tbody>
</table>
Index of Patent Rights

Year	North	South	Latin Am
1995 | 3 | 2.5 | 2
2000 | 3.5 | 3 | 2.7
2005 | 3.8 | 3.2 | 2.9
2010 | 4 | 3.5 | 3.1
Correlations with IP Survey by World Economic Forum

<table>
<thead>
<tr>
<th>Correlation between WEF and:</th>
<th>All Countries</th>
<th>North</th>
<th>South</th>
<th>Latin America</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index of Patent Rights</td>
<td>0.75</td>
<td>0.79</td>
<td>0.73</td>
<td>0.89</td>
</tr>
<tr>
<td>Index of Copyright Protection</td>
<td>0.31</td>
<td>0.34</td>
<td>0.31</td>
<td>0.58</td>
</tr>
<tr>
<td>Index of Trademark Rights</td>
<td>0.32</td>
<td>0.37</td>
<td>0.30</td>
<td>0.82</td>
</tr>
</tbody>
</table>
Evidence: Patent Protection & Innovation

• Measures of Innovation:
 • R&D (input) and Patent Filings (output)

• Samples: Multi-country panels

• Findings vary by income group:
 • Patent protection has a significant effect on R&D and patenting in the North, controlling for other factors.
 • Weak (insignificant) effects on Southern R&D and negative (in some cases) on Southern patenting, controlling for other factors.

• Possible Explanations:
 • lagged effect
 • threshold effect (if sufficient indigenous technological capacity exists)
 • imitative, adaptive R&D constrained
Evidence: Patent Protection & Technology Transfer

- Modes of TT: Exports, FDI, and Licensing

- Findings:
 - mixed but mostly positive β estimates
 - varies by industry, type of intangible asset, and income group
 - effects are conditional on presence of other factors (human capital, wages, market size, governance, taxes)

- Limitations of Existing Work:
 - single mode
 - lack of non-U.S. data
 - inadequate information about ‘quality’ of TT or prices and access (quantity supplied).
Impact of Patents on Technology Transfer (holding other factors constant):

Range of Findings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exports</td>
<td>FDI</td>
<td>Licensing</td>
</tr>
<tr>
<td>Pooled</td>
<td>+, 0</td>
<td>+, 0</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developed Countries</td>
<td>?</td>
<td>?</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Developing Countries</td>
<td>+</td>
<td>+, 0</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symbol Key: + positive effect, - negative effect, 0 insignificant, ? indeterminate, n/a not avail.
Licensing: Affiliated vs. Unaffiliated

- Ivus, Park, and Saggi (2014) [in progress]
 - U.S. multinational activity in 44 developing countries, 1993 – 2009
- Two types of industries:
 - discrete (pharmaceuticals)
 - complex (machinery, electronics)
- Unaffiliated licensing lower in discrete industries.
- Sequence: typically affiliated licensing before arms-length
- Patent reforms raise both kinds of licensing, but favors unaffiliated licensing relative to affiliated, and more so in sectors facing greater imitation risks.
- Are there ‘substantive’ technology transfers?
 - Impact on local R&D, value added, and innovation is asymmetric:
 - parent’s affiliated licensing affects R&D of subsidiaries
 - but unaffiliated licensing affects patenting by indigenous firms. Therefore, more knowledge spillovers associated with unaffiliated licensing.
Evidence: Copyrights & Creativity

• Challenges:
 - Contribution of Copyright Industries to National Economies – lack causal structure
 - Limited metrics of innovation: equivalent of “R&D” spending; copyrighted works are not all registered (or need to be to obtain protection); sales data flawed (product of price and quantity).

• How do copyrighted works affect technological progress?
 - Copyrighted works relate to arts, entertainment, culture
 - Some deal directly with inventive activity: software, internet technologies (broadband, cloud computing), infrastructure
 - Education, Libraries, Museums/Archives, Databases affect human capital accumulation, scientific & other scholarly work.

• Role of Copyright Flexibilities and User Rights
 - Fair use, fair dealing, transformative use
 - Compare impacts on employment, business creation, research, and social welfare
Economic Effects of Piracy

- Estimates of Revenue Loss are inexact

- Piracy crowds out legitimate sales less than 1:1
 - Sampling effects, network externalities

- Determinants of piracy
 - copyright strength and enforcement, social norms, incomes
Trademarks

• Indicator of Innovation?
 • New product launches, or improvements upon existing goods
 • Positive correlation between patenting and trademarking

• Digression: Monopoly vs. Monopolistic Competition

- Competition among varieties, each of which is ‘exclusive’

• Correlation between PAT and TM high
 • in pharmaceuticals (i.e., helps maintain brand loyalty)
 • among product innovations more than process innovations
 • imperfect correlation since TM activity is intense in retail & advertising
Trademarks

• Tradeoffs
 • Benefits: creates incentive for firms to invest in product quality and promotion; reduces search costs for consumers (branding and reputation-building)
 • Costs: creates market power (cf. consumer preference)

• Empirical Research on effect of trademarks on Firm (Stock Market) Value and Productivity
 • Is ‘trademarking’ worth doing?
 • Findings: some supporting evidence that TM raises firm value, especially in services, and TM more valuable for relatively lower-tech firms (high tech firms dependent more on patents and R&D)
LESSONS

• IPR reforms have occurred worldwide. South has been catching up but gaps remain in levels of innovation and technology diffusion

• IPR create costs & benefits, and are among the factors that affect technological progress

• IPR have varied economic effects by industry, level of economic development

• Innovative capacity important for exploiting IPRs

• Technology transfer modes are affected as IPRs strengthen: from exporting to FDI to affiliated licensing to unaffiliated licensing

• IPR levels and enforcement in turn a function of economic development
References (General Surveys)

