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Abstract

Mulitvariate stable distributions with elliptical contours are a class of
heavy tailed distributions that can be useful for modeling financial data. This
paper describes the theory of such distributions, presents formulas for calcu-
lating their densities, methods for fitting the data and assessing the fit. Nu-
merical routines are described that work for dimension d ≤ 40. An example
looks at a portfolio with 30 assets.

1 Introduction

Stable distributions are a class of probability distributions that generalize the nor-
mal law, allowing heavy tails and skewness that make them attractive in modeling
financial data. While there are many attractive theoretical properties of stable laws,
the use of these models in practice has been restricted by the lack of formulas for
stable densities and distribution functions. The univariate stable distributions are
now mostly accessible. There are reliable programs to compute stable densities,
distribution functions, and quantiles. And there are fast methods to simulate stable
r.v.s and several methods of estimating stable parameters based on maximum like-
lihood, quantiles, empirical characteristic functions, and fractional moments, see
Nolan (2001).

On the other hand, multivariate stable laws are only partially accessible. This
is a function of the lack of closed form expressions for densities, and the possible
complexity of the dependence structures. Byczkowski et al. (1993), Abdul-Hamid
and Nolan (1998) and Nolan (2007) give expressions for general multivariate stable
densities and distribution functions. In the bivariate case, there are some methods
of computing densities and estimating, but these are difficult to implement in higher
dimensions. This paper focuses on a computationally tractable case - elliptically
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contoured stable laws. It is shown that one can compute densities, approximate
cumulative probabilities and fit elliptical stable distributions in dimension d ≤ 40.

If X is α-stable and elliptically contoured, then it has joint characteristic func-
tion

E exp(iuTX) = exp(−(uT Σu)α/2 + iuT δ) (1)

for some positive definite matrix Σ and shift vector δ ∈ Rd. Here xTy =
∑d

k=1 xiyi

is the inner product in Rd. The spectral measure of this stable laws is known, but
complicated; see Proposition 2.5.8 of Samorodnitsky and Taqqu (1994). We will
call the matrix Σ the shape matrix of the elliptical distribution.

We assume throughout that X is nonsingular, which is equivalent to Σ being
strictly positive definite, i.e. for every u 6= 0, uT Σu > 0. All elliptically con-
toured stable distributions are scale mixtures of multivariate normal distributions,
see Proposition 2.5.2 of Samorodnitsky and Taqqu (1994). Let G ∼ N(0,Σ) be
a d-dimensional multivariate normal r. vector and A ∼ S(α/2, 1, γ, 0) be an inde-
pendent univariate positive (α/2)-stable r. v. with 0 < α < 2. Then X = A1/2G
is α-stable elliptically contoured with joint characteristic function

exp(−(γ/2)α/2(secπα/4)(uT Σu)α/2).

For this reason, elliptically contoured stable distributions are called sub-Gaussian
stable. This gives a formula for simulating elliptical stable distributions. In par-
ticular, if 0 < α < 2, A ∼ S(α/2, 1, 2γ2

0(cosπα/4)2/α, 0) and G ∼ N(0,Σ),
then

X = A1/2G + δ

has characteristic function (1).
The isotropic/radially symmetric cases arise when Σ is a multiple of the iden-

tity matrix, in which case the characteristic function simplifies to

E exp(iuTX) = exp(−γα
0 |u|α + iuT δ) (2)

where γ0 > 0 is a scale parameter and δ ∈ Rd is a location parameter. The spectral
measure in this case is a uniform distribution on the unit sphere S = {xTx = 1} ⊂
Rd. If A is as above and G ∼ N(0, I), then X = A1/2G + δ has characteristic
function (2).

The organization of this paper is as follows. Section 2 focuses on a special
case: the radially symmetric or isotropic case. Here the radial symmetry allows
one to characterize the joint distribution in terms of the amplitude R = |X|. This
univariate random variable can be numerically evaluated, and provides a way of
evaluating the multivariate isotropic stable densities. Section 3 treats the elliptically
contoured stable laws, shows how to compute these multivariate densities, and
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discusses estimation of this model. We end with an application, where the 30
stocks in the Dow Jones index are jointly analyzed as an elliptical stable model
with α = 1.71. An appendix gives more facts about the amplitude distribution.

2 Isotropic stable distributions

2.1 The amplitude distribution

Let X be a centered d-dimensional isotropic stable random vector with character-
istic function exp(−γα

0 |u|α). The amplitude of X is defined by

R = |X| =
√

X2
1 + · · ·+ X2

d .

Our primary interest here is in using the distribution of univariate R to get ex-
pressions for the density of multivariate isotropic and elliptical stable distributions.
However, in some problems the amplitude arises directly, so it is worthwhile ex-
ploring it’s properties. This section derives expressions for it’s density and d.f.
for general dimension. In dimension d = 1, isotropic is equivalent to symmetric,
and the cumulative distribution function of R = |X| is FR(r) = P (|X| ≤ r) =
FX(r)− FX(−r) = 2FX(r)− 1 and the density is fR(r) = 2fX(r). For the rest
of this paper we assume d ≥ 2.

When 0 < α < 2, X d=A1/2Z, where A ∼ S(α/2, 1, 2γ2
0(cosπα/4)2/α, 0) is

positive stable and Z ∼ N(0, I), A and Z independent. Thus

R2 d=A(Z2
1 + · · ·+ Z2

d) = AT, (3)

where T is chi-squared with d degrees of freedom, and independent of A. Using
the standard formula for products of independent r.v., the d.f. of R can be expressed
as

FR(r) = FR(r|α, γ0, d) = P (R ≤ r) = P (AT ≤ r2) =
∫ ∞

0
FA(r2/t)fT (t)dt,

(4)
and the density as

fR(r) = fR(r|α, γ0, d) = F ′
R(r) = 2r

∫ ∞

0
fA(r2/t)

fT (t)
t

dt. (5)

A scaling argument shows FR(r|α, γ0, d) = FR(r/γ0|α, 1, d) and fR(r|α, γ0, d) =
fR(r/γ0|α, 1, d)/γ0. Figure 1 shows the graph of the density in two and three di-
mensions.
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Figure 1: The density of the standardized (γ0 = 1) amplitude in 2 dimensions (top)
and 3 dimensions (bottom) for α = 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.

Equation (3) gives a way of simulating the amplitude distribution directly,
without having to generate multivariate X. It also gives an alternative way of
simulating radially symmetric stable random vectors in d dimensions: let A ∼
S(α/2, 1, 2γ2

0(cosπα/4)2/α, 0), T ∼ χ2(d), and S uniform on S, then X d=
√

ATS
is radially symmetric α-stable with scale γ0. In particular, in two dimensions, T is
exponential and can be generated by −2 log U1 and S = (cos(2πU2), sin(2πU2)),
where U1 and U2 are independent U(0,1).

There are other expressions for the amplitude distribution. One is a simple
change of variables: setting s = r2/t transforms (4) and (5) to

FR(r) = r2

∫ ∞

0
s−2FA(s)fT (r2/s)ds =

rd

2d/2Γ(d/2)

∫ ∞

0
FA(s)s−d/2−1e−r2/(2s)ds

(6)

4



fR(r) = 2r

∫ ∞

0
s−1fA(s)fT (r2/s)ds =

2rd−1

2d/2Γ(d/2)

∫ ∞

0
fA(s)s−d/2e−r2/(2s)ds

(7)
A third expression is from Zolotarev (1981):

fR(r) =
2

2d/2Γ(d/2)

∫ ∞

0
(rt)d/2Jd/2−1(r t)e−γα

0 tαdt, (8)

where Jν(·) is the Bessel function of order ν.
The program to compute fR and FR evaluates (4) and (5) by numerical in-

tegration using existing routines to calculate the univariate stable d.f. FA or the
univariate stable density fA. The current program works for α ≥ 0.8 and dimen-
sions 1 ≤ d ≤ 40. The integral in (8) is more difficult to evaluate numerically,
because the integrand oscillates infinitely many times, whereas the integrands in
(4) and (5) do not.

More facts about the amplitude density and d.f. are given in the Appendix. The
series expansions for the amplitude d.f. and density from there show:

lim
r→∞ rα(1− FR(r)) = lim

|X|→∞
rαP (R > r) = k1γ

α
0 (9)

lim
r→0

r−dFR(r) = k2γ
−d
0 (10)

lim
r→∞ rα+1fR(r) = αk1γ

α
0 (11)

lim
r→0

r1−dfR(r) = dk2γ
−d
0 (12)

for positive constants

k1 = k1(α, d) = 2α sin(πα/2)
πα/2

Γ((α + 2)/2)Γ((α + d)/2)
Γ(d/2)

,

k2 = k2(α, d) =
4Γ(d/α)

α2dΓ(d/2)2
.

We note that R is not stable, but (9) shows R is in the domain of attraction of a
univariate α-stable law with β = 1.

2.2 Densities of isotropic stable distributions

Let X be any radially symmetric (around 0) r. vector, not necessarily stable, with
density fX(x) and amplitude R = |X|. The d.f. of R, FR(r) = P (|X| ≤ r),
directly gives circular probabilities. The following argument gives an expression
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for the density of X in terms of the density of R. Using polar coordinates and
radially symmetry for r > 0,

FR(r) = P (|X| ≤ r) =
∫

|x|≤r
fX(x)dx =

∫ r

0

∫

S
fX(us)ud−1dsdu

=
∫ r

0

∫

S
fX(u, 0, 0, . . . , 0)ud−1dsdu

=
∫ r

0
Area(S)fX(u, 0, 0, . . . , 0)ud−1du.

Diffentiating shows fR(r) = Area(S)fX(r, 0, 0, . . . , 0)rd−1. Hence for x 6= 0, the
radial symmetry shows

fX(x) = f(|x|, 0, . . . , 0) =
fR(|x|)|x|1−d

Area(S)
=

Γ(d/2)
2πd/2

|x|1−dfR(|x|).

The key fact here is that calculating the density of multivariate X only requires
calculating the univariate function fR(r).

Therefore, when X is α-stable with characteristic function (2), the above rea-
soning shows

fX(x) =
{ (

Γ(d/2)/
(
2πd/2

)) |x− δ|1−dfR(|x− δ| |α, γ0, d) x 6= δ

Γ(d/α)/
(
α2d−1πd/2Γ(d/2)2γd

0

)
x = δ.

The value at x = δ uses (12). It is useful to consider the radial function h(r|α, d) =
fX(r, 0, . . . , 0|α, γ0 = 1, δ = 0), which is given by

h(r|α, d) =
{

Γ(d/2)/
(
2πd/2

)
r1−dfR(r|α, γ0 = 1, d) r > 0

Γ(d/α)/
(
α2d−1πd/2Γ(d/2)2

)
r = 0.

Then for a general isotropic α-stable X with scale γ0 and location δ,

fX(x) =
1
γd

0

h

( |x− δ|
γ0

∣∣∣∣ α, d

)
. (13)

3 Elliptically contoured stable distributions

3.1 Densities of elliptically contoured stable laws

Let Y be d-dimensional α-stable elliptically contoured random vector with shape
matrix Σ and shift vector δ. Then Y d=A1/2G + δ, where positive A ∼
S(α/2, 1, 2(cosπα/4)2/α, 0) and G ∼N(0, Σ) as above. It is well known that
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G d=Σ1/2G1, where Σ1/2 is from the Cholesky decomposition of Σ and G1 ∼N(0,I)
has independent standard normal components. Hence Y d=A1/2Σ1/2G1 + δ =
Σ1/2A1/2G1 + δ := Σ1/2X+ δ, where X is radially symmetric α-stable. So Y is
an affine transformation of X, and (13) shows

fY(y) = | detΣ|−1/2fX(Σ−1/2y) = | detΣ|−1/2h

(
|Σ−1/2(y − δ)|

∣∣∣∣α, d

)
.

(14)

3.2 Statistical analysis of data as elliptical stable

We first describe ways of assessing a d-dimensional data set to see if it is approxi-
mately sub-Gaussian and then estimating the parameters of a sub-Gaussian vector.
These methods are illustrated using the 30 stocks that make up the Dow Jones
index.

First perform a one dimensional stable fit to each coordinate of the data using
one of the univariate estimation methods to get estimates θ̂i = (α̂i, β̂i, γ̂i, δ̂i). If
the αi’s are significantly different, then the data is not jointly α-stable, so it cannot
be sub-Gaussian. Likewise, if the βi’s are not all close to 0, then the distribution
is not symmetric and it cannot be sub-Gaussian. If the αi’s are all close, form a
pooled estimate of α = (

∑d
i=1 αi)/d = average of the indices of each component.

Then shift the data by δ̂ = (δ̂1, δ̂2, . . . , δ̂d) so the distribution is centered at the
origin.

Next, assess for elliptical behavior. This can be approached by examining two
dimensional projections because of the following result. If X is a d-dimensional
elliptical α-stable random vector, then every two dimensional projection

Y = (Y1, Y2) = (aT
1 X,aT

2 X) (15)

(a1,a2 ∈ Rd) is a 2-dimensional elliptical α-stable random vector. Conversely,
suppose X is a d-dimensional α-stable random vector with the property that ev-
ery two dimensional projection of form (15) is non-singular elliptical, then d-
dimensional X is non-singular elliptical α-stable. Thus is suffices to assess multi-
variate data by looking at two dimensional distributions. While one cannot do this
for all projections, one can check pairs visually by looking at scatter plots.

Estimating the d(d + 1)/2 parameters (upper triangular part) of Σ can be
done in two ways. Note that for any u, uTX is univariate α-stable with scale
γ(u) = (uT Σu)1/2. For the first method, set rii = γ2

i , i.e. the square of the scale
parameter of the i-th coordinate. Then estimate rij by analyzing the pair (Xi, Xj)
and take rij = (γ2(1, 1) − rii − rjj)/2, where γ(1, 1) is the scale parameter of
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(1, 1)T (Xi, Xj) = Xi+Xj . This involves estimating d+d(d−1)/2 = d(d+1)/2
one dimensional scale parameters.

For the second method, note that E exp(iuTX) = exp(−γ(u)α), so

[− ln E exp(iuTX)]2/α = uT Σu =
∑

i

u2
i σii + 2

∑

i<j

uiujσij .

This is a linear function of the σij’s, so they can be estimated by regression. This
method may be more accurate because it uses multiple directions, whereas the
first method uses only three directions: (1,0), (0,1) and (1,1). Sample estimates of
γ2(u) on a grid of u points can be used for the middle term above. In both methods,
checks should be made to test that the resulting matrix Σ is positive definite.

Adjusted daily closing prices for the 30 stocks in the current Dow Jones index
were collected between January 3, 2000 and December 31, 2004. Days with miss-
ing prices for one or more stock were deleted - this occurred 8 times in the 2256
trading days. Log-ratios of consecutive prices were computed separately for each
stock, with the resulting data set having 2247 returns for 30 stocks.

The results of the analysis of each component of the Dow Jones data set is
given in Table 1, Figure 2 shows plots of the estimated α and β for each of the
30 components from the table, and Figure 3 shows one pairwise plot. While there
seems to be noticeable variability in the α’s and some β differ from 0, we argue
below that the stable model gives a better fit than a normal model and proceed
with the analysis. If we want to use an elliptical multivariate distribution, allow for
heavy tails, and retain the property of accumulated returns having the same type of
distribution as daily returns, then one has to use an elliptical stable model.

The 30 × 30 shape matrix Σ was estimated for this set using the first method
above. For space reasons we do not show this large matrix, instead a heat map of Σ
is displayed in Figure 4. The color shows the size of the entries in the shape matrix.
The estimation of the individual stable fits and the shape matrix estimation using
maximum likelihood estimation for the 30 component example took 175 seconds
on a desktop PC.

It is possible to compute the log-likelihood ratio for the stable elliptical fit
vs. a multivariate normal fit. For the Dow Jones data, the stable log-likelihood is
`1 = 96307. In contrast, if the data is fit with a N(µ, Σ) model, the log-likelihood
is `2 = 97549. The likelihood ratio test is exp(`1− `2) ≈ 10539, strongly favoring
the stable model.

Because it is possible to quickly simulate from an elliptical stable distribution
of high dimension, Monte Carlo estimates of probabilities can be computed. Fig-
ure 5 compares the probability P (|Xi| < a, i = 1, . . . , 30) for (a) the observed data
of size 1247, (b) a MC estimate from a simulated stable sample of size n = 10, 000
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symbol α̂ β̂ γ̂ δ̂

MMM 1.69 0.27 0.00972 -0.000657
AA 1.86 0.16 0.01623 -0.000576
MO 1.53 -0.05 0.01067 0.001335
AXP 1.72 -0.00 0.01383 0.000284
AIG 1.69 0.05 0.01168 -0.000313
BA 1.80 -0.05 0.01379 0.000720
CAT 1.82 0.27 0.01334 -0.000213
C 1.70 0.02 0.01280 0.000210
KO 1.62 0.01 0.00956 -0.000222
DD 1.69 0.26 0.01134 -0.001330
XOM 1.79 -0.25 0.00966 0.000862
GE 1.73 0.11 0.01268 -0.000670
GM 1.71 0.09 0.01319 -0.000709
HPQ 1.68 0.05 0.01805 -0.000970
HD 1.65 0.01 0.01436 -0.000229
HON 1.64 0.08 0.01460 -0.000469
INTC 1.75 0.05 0.02048 -0.000495
IBM 1.59 0.02 0.01179 -0.000361
JNJ 1.73 0.02 0.00939 0.000376
JPM 1.67 -0.00 0.01452 -0.000313
MCD 1.69 -0.03 0.01128 0.000115
MRK 1.72 -0.10 0.01127 0.000218
MSFT 1.65 0.02 0.01386 -0.000498
PFE 1.75 0.00 0.01216 0.000095
PG 1.55 0.08 0.00816 0.000170
SBC 1.71 0.01 0.01339 -0.000474
UTX 1.77 -0.01 0.01263 0.000721
VZ 1.76 0.11 0.01274 -0.000637
WMT 1.66 0.08 0.01185 -0.000689
DIS 1.79 0.16 0.01485 -0.000644

α=1.71

Table 1: Maximum likelihood estimates of stable parameters for the 30 stocks in
the Dow Jones index. Note that δ is in the continuous 0-parameterization. α and β
across stocks are plotted in Figure 2.
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Figure 2: α and β for the 30 components of the Dow Jones data. Order is as shown
in Table 1.

generated from the elliptical stable fit, and (c) a MC estimate from a simulated nor-
mal sample of size n = 10, 000 generated from the normal fit. Note that the normal
fit severely underestimates the tail, while the stable fit underestimates the tail for
quantiles less than 0.98, and overestimate the tail probability for higher quantiles.

Finally, we note that most of what we have done here is easily extended to other
elliptical distributions, e.g. multivariate t-distributions with elliptical contours. In
all cases, the amplitude function of the isotropic case gives a way to evaluate mul-
tivariate densities and bivariate projections can be used to assess for multivariate
elliptical shape. The calculations described above are now part of the program
STABLE, Robust Analysis Inc (2005).
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A More facts about the amplitude distribution

There are many facts about the amplitude density and d.f. Since they are useful in
finance applications, in signal processing (see Kuruoglu and Zerubia (2004)), and
astronomy, we collect them here.

Using the series expansions for stable densities in equations (4) and (5) leads
to series expansions for fR(r) and FR(r): when 0 < α < 1

FR(r) = 1− 2
παΓ(d/2)

∞∑

k=1

(−1)k+1Γ
(

kα+2
2

)
Γ

(
kα+d

2

)
sin

(
kαπ
2

)

k k!

(
r

2γ0

)−kα

(16)

fR(r) =
1

πγ0Γ(d/2)

∞∑

k=1

(−1)k+1Γ
(

kα+2
2

)
Γ

(
kα+d

2

)
sin

(
kαπ
2

)

k!

(
r

2γ0

)−kα−1

(17)

When 1 < α < 2,

FR(r) =
4

αΓ(d/2)

∞∑

k=0

(−1)kΓ
(

2k+d
α

)

(2k + d) k! Γ
(

2k+d
2

)
(

r

2γ0

)2k+d

(18)

fR(r) =
2

αγ0Γ(d/2)

∞∑

k=0

(−1)kΓ
(

2k+d
α

)

k! Γ
(

2k+d
2

)
(

r

2γ0

)2k+d−1

(19)

When α < 1, (16) and (17) converges absolutely for any r > 0; when α > 1, they
are asymptotic series as r →∞. Likewise, (18) and (19) are absolutely convergent
for α > 1 and an asymptotic series for α < 1 for r near 0.

Let fd(r) = fR,d(r) be the amplitude density and Fd(r) = FR,d(r) be the
amplitude d.f. in d dimensions. An argument using (6) and (7) shows

Fd+2(r) = Fd(r)− r

d
fd(r) and dfd+2(r) = (d− 1)fd(r)− rf ′d(r). (20)

One consequence of the latter expression is that the score function for R can be
computed without explicitly differentiating:

− d

dr
log fd(r) = −f ′d(r)

fd(r)
=

d− 1
r

− d fd+2(r)
rfd(r)

.

When α = 2, R2 = X2
1 + · · · + X2

d = 2γ2
0T , where T is chi-squared with

d degrees of freedom. The d.f. and density are FR(r) = FT (r2/(2γ2
0)) = 1 −

Γ(d/2, r2/(4γ2
0))/Γ(d/2) and fR(r) = (r/γ2) fT (r2/(2γ2

0)). In two dimensions,
R =

√
2γ0

√
T is a Rayleigh distribution with density and d.f.

fR(r) =
1

2γ2
0

re−r2/(4γ2
0) and FR(r) = 1− e−r2/(4γ2

0). (21)
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(Note that this is not the customary scaling for the Rayleigh, which is based on X ∼
N(0, γ2

0I) and has density r/γ2
0 exp(−r2/(2γ2

0)) and d.f. 1− exp(−r2/(2γ2
0)).)

When α = 1, the amplitude density and d.f. have explicit formula in all di-
mensions. The expressions in dimensions 1, 2 and 3 are:

d = 1 fR(r) = 2
πγ0/(γ2

0 + r2) FR(r) = 2
π arctan(r/γ0)

d = 2 fR(r) = γ0r/(γ2
0 + r2)3/2 FR(r) = 1− γ0/

√
γ2

0 + r2

d = 3 fR(r) =
4γ0

3π

γ2
0 + 2r2

(γ2
0 + r2)2

FR(r) =
2
π

[
arctan(r/γ0)− γ0r

3(γ2
0 + r2)

]

Expressions for higher dimensions can be found using the recursion relations (20).
The fractional moments of R can be found using (3): if −d < p < α,

E(Rp) = E|X|p = E(AT )p/2 = (EAp/2)(ET p/2) (22)

= (2γ0)p Γ(1− p/α)
Γ(1− p/2)

Γ((d + p)/2)
Γ(d/2)

,

where the first expectation (which is finite for all for all p < α) is from Section 2.1
of Zolotarev (1986); a short calculation is used for the second expectation (which
is finite for all p > −d). This expression holds for complex p in the strip −d <
Re p < α, giving the Mellin transform of R.

The above expression for moments combined with Markov’s inequality gives
a uniform bound on tail probabilities of R and isotropic X:

sup
r>0

rp(1− FR(r)) = sup
r>0

rpP (|X| > r) ≤ E(Rp), 0 < p < α (23)

Let X be univariate strictly stable, e.g. X ∼ S(α, β, γ, 0) with α 6= 1 or
X ∼ S(1, 0, γ, 0). Section 3.6 of Zolotarev (1986) shows log |X| has mean and
variance

E(log |X|) = γEuler

(
1
α
− 1

)
+ log

(
γ

(cosαθ0)1/α

)

Var(log |X|) =
π2(1 + 2/α2)

12
− θ2

0

where γEuler ≈ 0.57721 is Euler’s constant and θ0 = α−1 arctan(β tan(πα/2)).
(Note the constant θ0 arises above because Zolotarev uses a different parameter-
ization.) The following is a multivariate generalization of this result, it uses the
digamma function ψ(z) = Γ ′(z)/Γ(z).
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Lemma 1 log R has moment generating function E exp(u log R) = E Ru given
by (22) for −d < u < α. The mean and variance of log R are

E(log R) = log(2γ0) + γEuler

(
1
α
− 1

2

)
+

1
2
ψ(d/2)

Var(log R) =
π2

6

(
1
α2

− 1
4

)
+

1
4
ψ ′(d/2).

We will not pursue it here, but there are several ways of estimating γ0 and α
from amplitude data: (a) maximum likelihood estimation using fR(r), (b) frac-
tional moment methods using (22), and (c) using the first and second moments of
log R and Lemma 1.
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