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Abstract

There are now several reliable methods for estimating stable pa-
rameters from data. However, little attention has been paid to model
verification, i.e. how to assess whether the stable parameters esti-
mated actually do a good job of describing the data. We analyze sev-
eral heavy tailed data sets and demonstrate diagnostics for assessing
both univariate and multivariate stable fits to data sets. Multivari-
ate stable distributions are characterized in terms of one dimensional
projections and new results are given for sub-Gaussian stable distri-
butions.

Keywords: Stable distributions, parameter estimation, diagnostics,
exploratory data analysis.

1 Introduction

Stable distributions are a rich class of distributions that include the Gaussian
and Cauchy distributions in a family that allows skewness and heavy tails.
The class was characterized by Paul Lévy (1924) in his study of normalized
sums of i.i.d. terms. The general stable distribution is described by four
parameters: an index of stability « € (0,2], a skewness parameter (3, a
scale parameter v and a location parameter 0. The lack of closed formulas



for densities and distribution functions for all but a few stable distributions
(Gaussian, Cauchy and Lévy) has been a major drawback to the use of stable
distributions by practitioners. This paper shows that the computational
problems have now been resolved and it is feasible to fit stable models to
data and to use diagnostics to assess the goodness of fit.

Stable distributions have been proposed as a model for many types of
physical and economic systems. There are several reasons for using a stable
distribution to describe a system. The first is where there are solid theoret-
ical reasons for expecting a non-Gaussian stable model, e.g. reflection off a
rotating mirror yielding a Cauchy distribution, hitting times for a Brownian
motion yielding a Lévy distribution, the gravitational field of stars yielding
the Holtsmark distribution; see Feller (1971) for these and other examples.
The second reason is the Generalized Central Limit Theorem which states
that the only possible non-trivial limits of normalized sums of i.i.d. terms
are stable. It has been argued that many observed quantities are the sum
of many small terms - the price of a stock, the noise in a communication
system, etc. and hence a stable model should be used to describe such sys-
tems. The third argument for modeling with stable distributions is empirical:
many large data sets exhibit heavy tails and skewness. The strong empiri-
cal evidence for these features combined with the Generalized Central Limit
Theorem is used by many to justify the use of stable models. Examples
in finance and economics are given in Mandelbrot (1963) and (1972), Fama
(1965), Embrechts, Kliippelberg, and Mikosch (1997), Cheng and Rachev
(1995), McCulloch (1996); in communication systems by Stuck and Kleiner
(1974), Zolotarev (1986) and Nikias and Shao (1995). Such data sets are
poorly described by a Gaussian model, but possibly can be described by a
stable distribution.

Several recent monographs focus on stable models: Zolotarev (1986),
Christoph and Wolf (1993), Samorodnitsky and Taqqu (1994), Janicki and
Weron (1994), and Nikias and Shao (1995). For the related topic of model-
ing with heavy tailed distributions, see Embrechts, Kliippelberg and Mikosch
(1997) and Adler, Feldman and Taqqu (1998).

Skeptics of stable models recoil from the implicit assumption of infinite
variance in a non-Gaussian stable model and have proposed other models for
observed heavy tailed and skewed data sets, e.g. mixture models, time vary-
ing variances, etc. Of course the same people who argue that the population
is inherently bounded and therefore must have a finite variance, routinely use
the normal distribution - with unbounded support - as a model for this same
population. The variance is but one measure of spread for a distribution,
and it is not appropriate for all problems. From an applied point of view,



what we generally care about is capturing the shape of a distribution.

We propose that the practitioner approach this dispute as an agnostic.
The fact is that until now we have not really been able to compare data
sets to a proposed stable model. In some cases there are solid theoretical
reasons for believing that a stable model is appropriate; in other cases we
will be pragmatic: if a stable distribution describes the data accurately and
parsimoniously with four parameters, then we accept it as a model for the
observed data.

This paper is organized in the following way. The remainder of this sec-
tion describes two parameterizations for stable distributions and some basic
properties. Section 2 discusses univariate estimation techniques and diagnos-
tics for assessing whether a data set is stable or not. Examples of stable fits
for several data sets are given in Section 3. Section 4 focuses on multivariate
stable distributions, stressing univariate projections, an approach that we
believe simplifies some of the theory and is well suited for estimation and
diagnostics. Section 5 is on multivariate estimation and diagnostics. The
special case of sub-Gaussian stable distributions is discussed in Section 6.
Finally, we give a discussion of our results and information on software in
Section 7.

1.1 Parameterizations and basic properties

There are at least half a dozen different parameterizations of stable distri-
butions. All involve different specifications of the characteristic function
and all are useful for one reason or another. The parameterization most
often used now (see Samorodnitsky and Taqqu (1994)) is the following:
X ~ S(a, 8,7, 06;1) if the characteristic function of X is given by

exp{—°|t|* [1 — i (tan Z2)(sign t)| + 6t} o #1
FEexp(itX) = (1)
exp{—"[t| [1 + i32(signt) In |t|] + 0t} a=1.

The range of parameters are 0 < a < 2, —1 < g < 1, scale v > 0, and
location § € R. Equation (1) is a slight variation of the (A) parameterization
of Zolotarev (1986).

A more useful parameterization in applications is a variation of Zolotarev’s
(M) parameterization: we will say X ~ S(a, 3,7,0;0) if the characteristic
function of X is given by

Eexp(itX) =



{ exp{—~"t|* [1 + i (tan 52)(sign t) ((v[t)'~* — 1)] +i0t} a#1
exp{—7lt| [1 + i32(signt)(In|t| + In fy)] + it} a=1.

The value of this representation is that the characteristic functions (and hence
the corresponding densities and d.f.) are jointly continuous in all four param-
eters, while the S(«, 3,7, d;1) parameterization is not. Accurate numerical
calculations of the corresponding densities show that in this representation
« and 3 have a much clear meaning as measures of the heaviness of the tails
and skewness parameters, see Figure 1.

We caution the reader that neither the S(«, 3,7, d;0) parameterization
nor the variables used for scale and location are standard. Most of the
literature uses o for the scale and u for the location parameter; we are using
more neutral variable names v and 0 respectively. Since the scale is never the
standard deviation, it is confusing to practioners to use the symbol o. (When
a < 2, there is no standard deviation; when o = 2, the scale above is chosen
so that the standard deviation is v/2v.) Likewise, the location parameter
in the S(«a, 3,7,0;0) parameterization is not the mean (unless > 1 and
f = 0) and in the S(a, 3,7,0;1) parameterization it is not the mean in
half the cases (when a < 1, there is no population mean). We prefer using
the S(«, 3,7, d;0) parameterization and expressing the mean and variance,
when they exist, as functions of the parameters («, 3,,9). This is common
practice for many of the standard probability distributions, e.g. Gamma,
Beta, Weibull, Pareto, t, F', etc.

The parameters «, # and v have the same meaning for the two parame-
terizations, while the location parameters dy and ; of the 0 and 1 parame-
terizations are related by

do — f(tan Z¢)y a # 1

51:{5_5212 =1 (2)
0 ZyInvy Q .

The particular form of the characteristic function was chosen to make the 0
parameterization a location and scale family: if Y ~ S(«, 3,7, d;0), then for
any a # 0, b, aY + b ~ S(a, (signa)f, |a|y, ad + b;0). We will base the likeli-
hood calculations below on the 0 parameterization because it is the simplest
scale-location parameterization which is jointly continuous in all four param-
eters. Various authors sidestep the discontinuity at @ = 1 by saying that
the probability that o = 1 is zero therefore you can ignore it; Buckle (1995)
assumes that you know beforehand that either « < 1 or a > 1 and restricts
his prior for « to the appropriate interval. The shape of the data is what we
really care about, and that is similar when « is near or at 1; the standard



<
S
—— alpha=0.7
------- alpha=0.8
— — — alpha=0.9
0 ] — — alpha=1.0
© — - alpha=1.1
alpha=1.2
alpha=1.3
S
[= o
-
2
o
S -
<
S
™
2 A
S
[= o
-
2
o
S -

Figure 1: Stable densities in the S(«, 3,7, d;0) (top) and S(«, 3,7, d;1) (bot-
tom) parameterizations. = 0.8, vy =1, 6 =0, and « as indicated. In the 1
parameterization, the mode is near 0 for a near 0 or 2, or a = 1, but diverges
to +00 as a T 1 and diverges to —oo as a | 1.



parameterizations simply masks that with a shift. It is preferable to let the
data determine what « is and not make assumptions about the parameters,
even if «/ is not near 1. Finally, the use of the 0 parameterization has the
technical advantage of reducing the correlation between the parameter esti-
mates, especially when « is near 1. More information on parameterizations,
modes of stable densities and generalizations to multivariate stable laws can
be found in Nolan (1998).

Basic properties of stable distributions can be found in Samorodnitsky
and Taqqu (1994). Some of the prominent properties are: heavy tails that
are asymptotically Pareto, possible skewness of the distributions, and smooth
unimodal densities with no closed formula. Let f(z|«, 3,7, d) be the density
of a S(«, 3,7,9;0) distribution. Known facts about stable densities in the
standard parameterization show that f(x|a,—f,v,9) = f(—z|a, 3,7, —0)
and

[0 —ytan ¥, 00) a<land =1
support f(z|a, 8,7,6) = § (00,0 +ytan %] a <land f=—1
(—00, +00) otherwise.

Note that for a totally skewed (3 = £1) distribution when « < 1, the finite
endpoint of the support goes to (sign 3)oo as @ 1 1. It can be shown that
the mode and most of the distribution stay concentrated near ¢, so that
only a very small probability is far out on that tail. In fact, the light tail
in the totally skewed cases decays faster than Pareto. For algorithms that
accurately compute stable densities and cumulatives, see Nolan (1997).

2 Univariate estimation and diagnostics

There are several methods of estimating stable parameters. There are other
methods, but we will focus on three general methods, which we describe
briefly next. Unpublished simulation results suggest that these are the best
three general methods, and that the order of presentation below is from
fastest to slowest and from least accurate to most accurate.

The oldest is the quantile/fractile method of Fama and Roll (1971) (sym-
metric case) and McCulloch (1986) (general case). It uses five sample quan-
tiles (5%, 25 50" 75 95" quantiles) and matches these values to the sta-
ble distribution with the closest spread pattern.

Since closed forms are known for the characteristic functions of stable
laws, several researchers have based estimates on the empirical or sample
characteristic function. Press (1972) seems to have been the first to do this.



Several modifications have been made to this approach, see Paulson, Hol-
comb and Leitch (1975), Feuerverger and McDunnough (1981a) and (1981b),
Koutrouvelis (1980) and (1981), Kogon and Williams (1998). The paper of
Kogon and Williams incorporates several technical improvements that we
highly recommend (using the S(«, 3,7, J; 0) parameterization and doing an
initial scale-location normalization).

Maximum likelihood estimation has been done in certain cases. While not
easily accessible, DuMouchel (1971) gives a wealth of information on estimat-
ing stable parameters by approximate maximum likelihood at a remarkably
early date. See also DuMouchel (1973a), (1973b), (1975) and (1983). For the
special case of ML estimation for symmetric stable distributions, see Brorsen
and Yang (1990) and McCulloch (1998). The general (not necessarily sym-
metric case) is described in Nolan (1999), where a fast pre-computed spline
approximation to stable densities is used to compute the likelihood and nu-
merically maximize it. Numerical computation of the Fisher information
matrix gives confidence bounds for the parameter estimates. While slower
than the other methods, the numerical maximum likelihood technique is still
quite fast: for a sample of size n = 1000, estimates are found within one
second on a 300 MHz PC. Since this is asymptotically the minimum variance
unbiased estimator, ML estimates are given in the following examples, unless
otherwise stated.

2.1 Diagnostics for assessing stability

In principle, it is not surprising that one can fit a data set better with the
4 parameter stable model than with the 2 parameter normal model. The
relevant question is whether or not the stable fit actually describes the data
well. Any procedure for estimating stable parameters will find a “best fit”
by its criteria: the maximum likelihood approach maximizes the likelihood
numerically, the quantile methods try to match certain data quantiles with
those of stable distributions, the characteristic function based methods fit
the empirical characteristic function. All will give some values for parameter
estimates, even if the shape of the observed distribution is not similar to
the fitted distribution, e.g. the data is multi-modal, has gaps in its support,
etc. Therefore, it is important to have some means of assessing whether the
resulting fit is reasonable.

The use of a diagnostic depends on what you are planning to do with a
data set. For testing residuals from a regression analysis, departures from
normality around the center of the distribution are usually not important;
outliers are important because they can affect the validity of normal theory



conclusions. In the re-insurance field, one is only concerned with extreme
events and there one wants to estimate tails of the claim distribution as
accurately as possible. In a model of stock prices or exchange rates, one may
be interested in the shape of the whole distribution.

While non-Gaussian stable distributions are heavy-tailed distributions,
most heavy-tailed distributions are not stable. One can try to fit a heavy-
tailed data set with a stable distribution, but it is inappropriate in many
cases. As DuMouchel (1983) points out, making a statement about the tails
is quite distinct from making a statement about the entire distribution. We
amplify this point by an example similar to one used by DuMouchel. Define
for0<a<2 x9g>0

—z2/2
1+a)

2] < 2o

c1e
o(0) = gtolo ) = { ol <

cola| =

where ¢, and ¢y are chosen to make ¢ continuous and [g¢(x)de = 1: ¢ =
c1(a, 20) = [V2m (2®(20) —1)+(2/a)xg exp(x2/2)] 7Y, co = ¢1 exp(—a2/2) x5
A random variable X with density ¢ has a normal density in the inter-
val —zy < z < my, a Pareto tail, with fraction p = P(|X| < zy) =
c1V27(2®(x) — 1) in the normal part of the density and 1 —p on the Pareto
tails. For any finite x, this density has infinite variance and is in the do-
main of attraction of a symmetric stable distribution with index of stability
. Suppose we observe a sample of size n from such a distribution and try
to fit it with a stable distribution. If (1 — p)n is small, we will likely have
few observations from the Pareto part of the distribution and we will not be
able to detect the heavy tails. Any reasonable estimation scheme would lead
to an & &~ 2. On the other hand, if (1 —p)n is large, then one would get an &
intermediate between the true o and 2, because the central part of the data
is coming from a light tailed density. An incorrect model is being fit to the
data, so it is no surprise that we get the “wrong” a. DuMouchel’s argument
to let the tails speak for themselves is sound, though his suggestion to use
the upper 10% of the sample to fit the tail is generally not appropriate, see
McCulloch (1997). Fofack and Nolan (1998) show that the asymptotic power
decay on a stable tail may take a long time to occur; for an arbitrary distri-
bution, there is no general statement that can be made about what fraction
of the tail is appropriate. (For a recent summaries of work on tail estima-
tion, see Beirlant, Vynckier and Teugels (1996), Embrechts, Kluiippelberg
and Mikosch (1997) and Reiss and Thomas (1997).)

The diagnostics we are about to discuss are an attempt to detect non-
stability. As with any other family of distributions, it is not possible to prove



that a given data set is or is not stable. We note that even testing for normal-
ity is still an active field of research, e.g. Brown and Hettmansperger (1996).
The best we can do is determine whether or not the data are consistent with
the hypothesis of stability. These tests will fail if the departure from stability
is small or occurs in an unobserved part of the range.

The first step we suggest is to compare estimates from the quantile
method, the sample characteristic function method, and maximum likeli-
hood. If they are close, then this supports the idea that the data is stably
distributed. If the parameters differ significantly and the sample is large,
then this argues that the data is not stably distributed, because the differ-
ent estimators are all consistent estimators. For the maximum likelihood
estimators, we do have asymptotic variances of the estimators and can thus
put confidence limits on the parameters. The other estimators do not yet
have asymptotic variances worked out, so we cannot make precise statements
about differences.

The next step is to do a smoothed density plot of the data. If there
are clear multiple modes or gaps in the support, then the data can’t come
from a stable distribution. For density plots, we smoothed the data with a
Gaussian kernel with standard deviation given by a “width” parameter. We
found that the commonly suggested width of 2(inter-quartile range)n='/3
works reasonably when the tails of the data are not too heavy, say a > 1.5,
but works poorly for heavier tailed data. For such cases, we used trial and
error to find a width parameter that was a small as possible without showing
oscillations from individual data points. The density plots give a good sense
of whether the fit matches the data near the mode of the distribution, but
generally is uninformative on the tails where both the fitted density and the
smoothed data density are small. If the smoothed density is plausibly stable,
proceed with a stable fit and compare the fitted distribution with the data
using q-q and p-p plots.

We note a practical problem with q-q plots for heavy tailed data. While
using q-q plots to compare simulated stable data sets with the exact cor-
responding cumulative d.f., we routinely had two problems with extreme
values: (1) most of the data is visually compressed to a small region and (2)
on the tails there seems to be an unacceptably large amount of fluctuation
around the theoretical straight line. For heavy tailed stable distributions, we
should expect such fluctuations: if X(; is the it" order statistic from an i.i.d.
stable sample of size n, p = (i — %)/n and w, is the p™ percentile, then for n
large, the distribution of X(; is approximately normal with EX;) = z, and
Var(X(;)) = p(1 —p)/nf(z,)?, e.g. page 91 of Ferguson (1996). These formu-
las are used to show pointwise 95% confidence bounds around the expected



value in the figures below. In sum, g-q plots may appear non-linear on the
tails, even when the data set is stable.

Because g-q plots have some problems, we also recommend using a mod-
ified p-p plot. Standard p-p plots tend to emphasize behavior around the
mode of the distribution, where they have more variation, and necessarily
pinch the curve near the tails. In Michael (1983), a “stabilized” p-p plot was
defined that eliminates this non-uniformity by using a transformation. (The
word stabilized refers to making the variance in the p-p plot uniform, and
has nothing to do with stable distributions. To stress this, we will use the
phrase “variance stabilized” p-p plot.) The result is better than the regular
p-p plot for detecting a poor fit near the extremes.

Finally, we tried comparing distribution functions, but did not find it very
helpful. Because of the curvature in the distribution functions, it is hard to
compare the fitted and empirical d.f. visually, especially on the tails.

3 Applications

3.1 Simulated stable data

Three data sets were generated, each of size n = 1,000 using the method of
Chambers, Mallows and Stuck (1976). The first example used («, 3,7,9) =
(0.7,0.5,1,0) and the ML parameter estimates with naive 95% confidence
intervals are respectively 0.746 4+ 0.062, 0.447 4+ 0.075, 0.929 4+ 0.116, and
—0.00540.081. The second example used («a, 3,7,0) = (1.3,0.5,1,0) and the
ML parameter estimates with naive 95% confidence intervals are respectively
1.347 + 0.092, 0.485 + 0.129, 0.998 + 0.072, and 0.027 + 0.105. The third
example used (a, 3,7,0) = (1.8,0.5,1,0) and the ML parameter estimates
with naive 95% confidence intervals are respectively 1.850 4 0.084, 0.374 £+
0.324, 1.026 + 0.054, and 0.013 + 0.108. Diagnostics are shown in Figures 2,
3, and 4 respectively.

The problems with g-q plots mentioned above are clear for a = 0.7,
persist with o = 1.3, and are minor for & = 1.8. To show how a normal
distribution describes these data sets, the density plots also show a normal
fit, where the sample mean and variance are used as the parameters. When
a = 0.7, the sample variance is so large that the normal fit appears to be a
flat line. When o = 1.3, the normal fit is far from the data and stable fit.
When « = 1.8, the normal fit still differs noticeably from the data and stable
fit.

10
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Figure 2: Simulated stable data set with n=1000, a = 0.7, 8 = 0.5,y = 1,
0 =0.
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Figure 3: Simulated stable data set with n=1000, o = 1.3, 8 = 0.5,y = 1,
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country e B y 1)

Australia 1.479 4+ 0.047 0.033 £ 0.080 0.00413 £ 0.00013 —0.00015 £ 0.00022
Austria 1.559+£0.047 —0.1194+0.092 0.00285 =+ 0.00009 0.00014 £ 0.00015
Belgium 1.473+£0.047 —0.061£0.080 0.00306 £ 0.00010 0.00009 £ 0.00016
Canada 1.574£0.047 —0.051+0.093 0.00379 £ 0.00012 0.00004 £ 0.00020
Denmark 1.545£0.047 —0.119£0.090 0.00272 £ 0.00008 0.00022 £+ 0.00014
France 1.438 £0.047 —0.146 £ 0.078 0.00245 £ 0.00008 0.00028 £+ 0.00013
Germany 1.4954+0.047 —0.182£0.085 0.00244 £ 0.00008 0.00019 £ 0.00013
Italy 1.441+0.046 —0.043+0.076 0.00266 £ 0.00009 0.00017 £ 0.00014
Japan 1.511+0.047 —0.1484+0.086 0.00368 £ 0.00012 0.00013 £ 0.00019
Netherlands 1.467+£0.047 —0.167+0.081 0.00244 £ 0.00008 0.00016 £+ 0.00013
Norway 1.533£0.047 —0.070£0.088 0.00253 £ 0.00008 0.00005 £ 0.00013
Spain 1.5124+0.047 —0.007 £0.083 0.00268 £ 0.00008 0.00012 £ 0.00014
Sweden 1.5174+0.047 —0.081£0.085 0.00256 £ 0.00008 0.00006 £ 0.00013

Switzerland 1.599+0.047 —0.179£0.100 0.00295 +£ 0.00009 0.00014 % 0.00016
United States 1.530+0.047 —0.088£0.088 0.00376 £ 0.00012 0.00009 £ 0.00020

Table 1: Exchange rate analysis. Maximum likelihood parameter estimates
and 95% confidence intervals with sample size of n = 4274.

3.2 Exchange rate data

Daily exchange rate data for 15 different currencies were recorded (in U.K.
pounds) over a 16 year period (2 January 1980 to 21 May 1996). The data
was transformed by vy, = In(x41/24), giving n = 4,274 data values. The
transformed data was fit with a stable distribution; results are shown in
Table 1.

Figure 5 shows smoothed density, q-q plot and variance stabilized p-p
plot for the German mark data set. The data sets are clearly not normal:
the heavy tails in the data causes the sample variance to be large, and the
normal fit poorly describes both the center and the tails of the distribution.
The g-q plot shows that the extreme tails of the data set are lighter than the
stable model. The horizontal line segment at the center of the p-p graph is
from the days where the exchange rate was unchanged on successive days.
As another measure of non-normality, the ratio of the stable fit log likelihood
to the normal log likelihood was computed for each currency. The ratio of
the log likelihoods for the ML stable fit to the normal fit were computed and
the values ranged from 113 to 1041.

Plots for the other currencies were similar, showing that the stable fit does
a reasonable job of describing the exchange rate data. We note in passing
that the currency with the heaviest tails (& = 1.441) was the Italian lire,
while the one with the lightest tails (& = 1.530) was the Swiss Franc.

14
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Figure 5: Density, variance stabilized p-p and g-q plots for the German mark
exchange rate data, n=4274.
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method « o] 7y o

quantile 1.996 1.000 .008579 -.003445
MCMC 1.650 768 .007900 -.003187
ML 1.518 &£ .422 743 £ .651 .006828 +.001931 —.003064 £ .003359

Table 2: Abbey National share price parameter estimates, n = 49.

3.3 CRSP stock prices

McCulloch (1997) analyzed forty years (January 1953 - December 1992) of
monthly stock price data from the Center for Research in Security Prices
(CRSP). The data set consists of 480 values of the CRSP value-weighted
stock index, including dividends, and adjusted for inflation. The quantile
estimates were & = 1.965, 3 = —1, 4 = 2.755 and 6 = 0.896. McCulloch
used ML with symmetrlc stable dlstrlbutlons to fit this data and obtained
— 1.845, 3 = — 2712 and § = 0.673. Our ML estimates with
naive 95% Conﬁdence 1ntervals are & = 1.855 £ 0.110, B = —0.558 + 0.615,
A =2.711 4+ 0.213 and 6 = 0.871 +0.424. The diagnostics in Figure 6 show
a close fit.
We note that the confidence interval for & is close to the upper bound of
2 for o and the one for [ is large and extends beyond the lower bound of -1,
so the asymptotic normality of these parameters has not been achieved and
the naive confidence intervals should not be strictly believed.

3.4 Abbey National share price

Buckle (1995) listed a small data set of stock price data. The price for Abbey
National shares was recorded for the period 31 July 1991 through 8 October
1991. The return was defined as (z;,1/x;) — 1, yielding n = 49 data points,
which were fit with a stable distribution. In the Monte Carlo Markov chain
(MCMC) approach used by Buckle, the means of the posterior distributions
were given. Table 2 lists these MCMC parameter estimates (transformed to
the 0 parameterization), the quantile estimates, and the ML estimates with
naive 95% confidence intervals.

The quantile method fit is essentially a normal distribution with a =
1.996, yet highly skewed. This is likely caused by the small sample size: with
n = 49, the 5 percentile is found by interpolating between the second and
third data point. It is hard to detect heavy tails when there is virtually
no tail. The MCMC method and ML method reach similar estimates. We

16
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Figure 6: Density, variance stabilized p-p plot and g-q plots for the CRSP
stock price data, n=480.
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tried the diagnostics on this data set and got mixed results, see Figure 7.
The p-p plot shows that the data are concentrated on a small set of values
and it is not clear how good a stable model is for this small data set. In
particular, healthy skepticism is called for when making statements about
tail probabilities unless a large data set is available to verify stable behavior.

We note that the density plot here changed radically as the smoothing
width parameter changed. Since the data is concentrated at a small number
of discrete points, a small smoothing parameter gives a density with multiple
spikes. We compromised on an intermediate value that showed location of
spikes, but smoothed things out.

3.5 Radar noise

This is a very large data set with n = 320,000 pairs of data points. The
two coordinates are the in-phase and quadrature components of sea clutter
radar noise. We focus on the in-phase component only here; see Section 5 for
an analysis of the bivariate distribution. The parameter estimates are & =
1.7966+.0048, 3 = .0054+.0173, 4 = .4402+.0013 and § = —.00060=.00247.
QThe quantile based estimators are a = 1.7042, B = .0058, ¥ = .3981 and
d = —.00040.) With this large sample size, the confidence intervals for the
ML parameter estimates are very small. Again the correct question is not
how tight the parameter estimates are, but whether or not the fit accurately
describes the data. The plots in Figure 8 show a very close stable fit,even
far out on the tails. Because 320,000 data points add little to the plots, we
actually show thinned g-q and p-p plots with 1,000 values.

3.6 Ocean wave power

Pierce (1997) proposed using positive a-stable distributions to model inher-
ently positive quantities such as energy or power. One example he uses is
the power in ocean waves, which is proportional to the square of the wave
height. Pierce lists a National Oceanographic and Atmospheric Adminis-
tration (NOAA) web site where hourly wave data can be downloaded. We
downloaded the same data set, edited out invalid numbers (99.00) and had
8084 values for the wave height variable WVHT. Pierce compared the data
with an @=0.75, 3 = 1 distribution (it is not indicated how these values
are obtained). Our analysis gave quantile estimates of & = 1.139255, B =1,
4 = 0.813324 and 6 = 0.841235; the ML estimates with naive 95% confidence
intervals are @=0.800 + 0.0177, le + 0, 4=0.566 + 0.018 and 6=0.965 +
0.021. The fact that we get very different estimates of « is an indication that
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the data set is not stable. The diagnostics in Figure 9 support this idea. The
plots show a reasonable fit around the mode, but a poor fit on both tails.
While it is possible that the power in waves is stably distributed, but that
measurement of extremes (both high and low) of wave height are inaccurate,
we would reject a stable model in this problem.

3.7 Simulated non-stable data

We simulated several data sets that were not stable and used our diagnostics
to assess the fit with a stable model. The first data set is a mixture of two
Cauchy distributions with different modes: a =1, 3 =0,y =1, with d =5
for 100 data points and then 6 = —5 for another 100 data points. Both the
p-p plot and the density plot in Figure 10 show the bimodality, so a stable
model is clearly not appropriate. Still, it is instructive to see what happens
if we fit these data with a stable model. The maximum likelihood estimates
are = 2, v = 3.867, and 0y = —.395 ([ is meaningless in the normal case).
Apparently the likelihood for this data set is dominated by the central terms
and is maximized by taking a normal curve with large variance. Even though
this is a heavy tailed data set, the use of an inappropriate stable model leads
to a light tailed fit! This is an example where the numerical maximum
likelihood method might get trapped in a local minimum, centered on one
of the modes, and lead to a “wrong” answer. In this case, there is no right
answer, but simple diagnostics show the data is not stably distributed.

The next example is a simulated data set consisting of a mixture of 9,000
Gaussian random variables with scale 1 and 1,000 Gaussian random variables
with scale 10, a “contaminated” normal mixture. The mixture has heavier
tails than a pure normal, so one might try to fit it with a stable distribution.
However, what we would really like to do is detect that it is not a stably
distributed data set. The ML estimates of the parameters are o = 1.3464.030
and v = 1.048 + .033 (the search was restricted to f = 0, § = 0). Here the
confidence intervals are small because the sample size of n = 10,000, not
because we have a good fit. The density plot in Figure 11 shows the smoothed
data density and the stable fit. The curves show a systematic difference that
indicates departure from a stable distribution. It is interesting to note that
in this example, the percentile estimate of « is 1.535, quite different from the
ML estimate. This is another indication that the data is not stable: if the
distribution is stable, then all consistent estimators of the parameters should
be close when there is a large sample.

Next, we generated a data set that was the sum of 1,000 independent
normal and Cauchy variables, a data set that is not stable. The ML estimates
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of the parameters are & = 1.20, 3 = 0.030, 4 = 1.344, § = —0.089. Figure 12
shows the diagnostics are not good at detecting non-stability here. Our only
intuition about why this is true is that the true ch. f. exp(—u?/2 — |u]) is
close to the fitted ch. f. exp(—|1.344u|"*) for small and moderate u values,
so the distributions are close in an L' and L™ sense. Consequently, it will
be hard to discriminate between this kind of distribution and a stable one
from data, unless there is a massive data set.

We briefly mention two other experiments we did. In one experiment,
10000 variables were generated from a Pareto distribution (F'(z) = 1—z7'7%;
x > 1) with o = 1.5. The quantile and ML estimates of o were 1.23 and 0.9
respectively, # was essentially 1. This shows that a stable fit to a data set
with genuine Pareto tails will give poor estimates of the tail index. In the
second experiment 10000 Gamma(2) variates were generated and fit with
a stable distribution. The quantile and ML estimates of a were 1.98 and
1.80 respectively, 3 was essentially 1. This shows that the light tails of the
Gamma distribution lead to estimates of a close to the Gaussian case, but
the skewed nature of the data showed up in the estimate of 5. While not
shown, the diagnostics did show the non-stability of these data sets.

4 Multivariate stable distributions

A formal definition for random vector X = (X7, X»,...,X,) to be stable
is given in Section 2.1 of Samorodnitsky and Taqqu (1994). The “jointly
stable” is sometimes used to stress the fact that the definition forces all the
components X; to be univariate a-stable with one a. This follows from the
following theorem and justifies the term a-stable random vector.

Theorem 1 (i) Let X be a stable random vector. Then every one dimen-
stonal projection u - X = > u; X; is one dimensional stable random variable
with the same index o for every u.

(ii) Conversely, suppose X is a random vector with the property that ev-
ery one-dimensional projection u - X is one dimensional stable, e.g. u - X ~
S(a(u), 5(u),v(u),d(u);1). Then there is one « that is the index of all pro-
jections, i.e. a(u) = « is constant. If & > 1, then X is stable. If « < 1 and
the location parameter function §(u) and the vector of location parameters
0 = (01,02, ...,04) of the components X1, Xo, ..., Xy (all in the 1 parameter-
ization) are related by

6(u) =u-9, (3)
then X is stable.
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Proof The first part is Theorem 2.1.2 of Samorodnitsky and Taqqu (1994).
The second part is Theorem 2.1.5(c) of Samorodnitsky and Taqqu (1994)
when o > 1. It remains to show that if @ < 1 and (3) holds, then X is
stable. To show this, define Y = X —§. Then Y has the property that every
one dimensional projection is strictly stable: u-Y = u- X —u-4 has location
parameter (in the 1 parameterization) 6(u) —u -8 = 0. Thus for every u,
u-Y is strictly stable, so by Theorem 2.1.5(a) of Samorodnitsky and Taqqu
(1994), Y is strictly stable. The definition of stable shows that any shift of
a stable r. vector is stable, so X =Y + 4 is also stable. O

We note that (3) holds automatically when « > 1, so the condition is
only required when « < 1. Furthermore, (3) is necessary when « # 1, so it
cannot be dropped. Section 2.2 of Samorodnitsky and Taqqu (1994) gives
an example due to David J. Marcus where a < 1 and all one dimensional
projections are stable, but (3) fails and X is not jointly stable.

One advantage of the preceding Theorem is that it gives a way of param-
eterizing multivariate stable distributions in terms of one dimensional pro-
jections. For any vector u € R, u-X ~ S(«, (u),v(u),d(u); k), k = 0, 1.
Thus we know the (univariate) characteristic function of u-X for every u,
and hence the joint characteristic function of X. Therefore oz and the func-
tions ((+), v(+) and §(-) completely characterize the joint distribution. In fact,
knowing these functions on the sphere S¢ = {u € R?: |u| = 1} characterizes
the distribution.

The functions 3(+), v(-) and §(-) must satisfy certain regularity conditions.
The standard way of describing multivariate stable distributions is in terms
of a finite measure A on the sphere S¢, called the spectral measure. The
following result is due to Feldheim (1937), Section 2.3 of Samorodnitsky and
Taqqu (1994) contains a proof. It is typical to use the spectral measure to
describe the joint characteristic function, we find it more convenient to relate
it to the functions 3(-), v(-), and §(-).

Theorem 2 Let X = (X1,..., Xy) be jointly stable, say
u'XNS(aaﬁ(u)77(u)7(5(u);k)7 k=0,1.

Then there ezists a finite measure A on S and a location vector & € R% with

s = ([ Jn-siaws)
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Jsa |u-s|%sign (u - s)A(ds)

= e s As)
d-u k=1,a#1
) u——fsd(u s)ln|u-s|A(ds) k=1,a=1
S(u) = <0 (tanT)ﬁ( u)y(u) k=0,a#1
)

'u__fsd(u s)In(u - s)A(ds)
23(u)y(u) In y(u) k=0a=1.

Proof Theorem 2.3.1 and Example 2.3.4 of Samorodnitsky and Taqqu
(1994) give the formulas for v(u), f(u) and the formulas for d(u) when
k = 1. For §(u) when k£ = 0, use (2). We note that the expressions can be
rewritten when £ =0, # 1 as

So(w) = 51(u)+tan%ﬂ(u)7(u)

= d(w)+tan 5" ( /S Ju-s|"sign (u- s)A(ds)/va(u)> ~(u)

e’ o N (1/a)—
_ 6-u+tan7/sd lu - s[*sign (u - s)A(ds) (/S u-s| A(ds))

Likewise, when k£ = 0,a =1,

o(w) = 1(w) + ZB(u)(u) Ino (u)

2
— 6-u+;/sdu-s[ln/sd|u-s|A(ds)—ln|u-s|]A(ds)

It is possible for X to be non-degenerate, but singular. For example, X =
(X1,0) is formally a two dimensional stable distribution if X is univariate
stable, but it is supported on the one dimensional subspace R x {0}. In what
follows, we will always assume that X is d-dimensional. It can be shown that
the following are equivalent:

e X is nonsingular.
e y(u) > 0 for all u € R%.

e span support(A) = R
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5 Multivariate estimation

There are several methods of estimating for multivariate stable distributions;
all involve some estimate of a and some discrete estimate of the spectral
measure A = o1 Melys,), sk € S¢. If you know the distribution is isotropic
(radially symmetric), then you can adapt the univariate fractional lower or-
der moment method to d-dimensions using problem 4, pg. 44 of Nikias and
Shao (1995) to estimate « and then the (constant) spectral measure. In
general one should let the data speak for itself, and see if the spectral mea-
sure A is constant. Rachev and Xin (1993) and Cheng and Rachev (1995)
use the fact that the directional tail behavior of multivariate stable distri-
butions is Pareto, and base an estimate of A on this. Nolan, Panorska and
McCulloch (1996) define two other estimates of A, one based on the joint
empirical /sample ch. f. and one based on the one dimensional projections of
the data.

We note that an estimate of A is preferred to an estimate of covariation,
since covariation is only a partial measure of the dependence in a bivariate
stable distribution, but A gives complete information. The covariation of
the components of X = (Xj,X,) can be obtained from A by [Xi, Xy] =
Jsa tita]t2]*"2A(dt).

Another advantage of Theorem 1 is that it gives a way of assessing
whether a multivariate data set is stable by looking at just one dimensional
projections of the data. Fit projections in multiple directions using the uni-
variate techniques described above, and see if they are well described by a
univariate stable fit. If so, and if the a’s are the same for every direction
(and if o < 1, the location parameters satisfy (3)), then a multivariate stable
model is appropriate. We will illustrate this in examples below.

For the purposes of comparing two multivariate stable distributions, the
parameters (o, #(u), y(u), §(u)) are more useful than A itself. This is because
the distribution of X depends more on how A distributes mass around the
sphere than exactly on the measure. Two spectral measures can be far away
in the traditional total variation norm (e.g. one can be discrete and the other
continuous), but their corresponding directional scale functions and densities
can be very close. Indeed, Theorem 2 shows that the only way A enters into
the joint distribution is through the parameter functions.

The diagnostics suggested are:

e Project the data in a variety of directions t and use the univariate

diagnostics described in Section 2 on each of those distributions. Bad
fits in any direction indicate that the data is not stable.
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e For each direction t, estimate the parameter functions «(t), 5(t), v(t),
d(t) by ML estimation. The plot of «(t) should be a constant, signif-
icant departures from this indicate that the data has different decay
rates in different directions. (Note that y(t) will be a constant iff the
distribution is isotropic.)

e Assess the goodness-of-fit by computing a discrete A by one of the
methods above. Substitute the discrete A in Theorem 2 to compute
parameter functions. If it differs from the one obtained above by pro-
jection, then either the data is not jointly stable, or not enough points
were chosen in the discrete spectral measure approximation.

These techniques are illustrated next. Each bivariate data set will have
two pages of graphs. The first is series of smoothed density, q-q plot and
variance stabilized p-p plot for projections in 8 different directions: /2, /3,
/4, 1/6,0,—7/6, —m /4, —m/3. (Because (—u) - x) = —u - X, projections in
the left half plane are reflections of those in the right half plane). The second
page will show the discrete estimate of the spectral measure (with m = 100
evenly spaced point masses) in polar form, a cumulative plot of the spectral
measure in rectangular form, and then four plots for the parameter estimates
(a(t), B(t),v(t),d(t)). Also on the a(t) plot is a horizontal line showing the
average value of all the estimated indices which is taken as the estimate of
the common « that should come from a jointly stable distribution. The plots
of 5(t) and ~(t) also show the skewness and scale functions computed from
the estimated spectral measure and Theorem 2. All three of these curves
should be close to the separately estimated directional parameters.

Some details on these plots. The polar plots of the spectral measure show
a unit circle and lines connecting the points (6;,r;), where §; = 27(j —1)/m
and r; = 14 (A\j/Anaz), Where A, = max; A;. The polar plots are spiky,
because we are estimating a discrete object. What should be looked at is
the overall spread of mass, not specific spikes in the plot. In cases where the
spectral measure is really smooth, it may be appropriate to smooth these
plots out to better show it’s true nature. In cases where the measure is
discrete, i.e. the independent case, then one wants to emphasize the spikes.
So there is no satisfactory general solution and we just plot the raw data.

Finally, most graphing programs will set vertical scale so that the data
fills the graph. This emphasizes minor fluctuations in the data that are not
of practical significance. In the graphs below, the vertical scales for the
parameter functions «(t), 3(t), v(t) are respectively [0,2], [-1,1], and [0,1.2 x
max y(t)]. These bounds show how the functions vary over their possible
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Figure 13: Density surface and level curves for “triangle” example.

range. For §(t), we used the bounds [—1.2xmax |0(t)|, 1.2xmax |6(t)|], which
visually exagerates the changes in 0(t). A scale that depends on maxy(t)
may be more appropriate.

5.1 Simulated “triangle” stable data

This data set is simulated from a known spectral measure using the method
of Modarres and Nolan (1994). A value of o = 1.2 and a discrete spectral
measure having three unit point masses, distributed at angles 7/3, 7 and
—m/3. A plot of the density surface and level curves are given in Figure 13.
The triangular spread of the spectral measure shows up in the triangular
shape of the level curves.

The simulated data set has n = 5, 000 points. Figure 14 shows EDA plots
for 8 projections. The rightmost column of plots has text which shows the
angle of projection (upper left corner) and the estimated parameter values
for those projections (lower right corner).

Figure 15 shows the estimated spectral measure and parameter functions.
The upper left polar plot shows the estimated spectral measure is mostly
concentrated at the correct three points, cumulative spectral measure shows
the same info in a different format. The plot of &(t) shows an essentially flat
curve near the correct a = 1.2. The plot of 3(t) and 4(t) show how skewness
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and scale vary as projection angle varies.

5.2 Simulated sub-Gaussian stable data

Here n = 5000 data points were simulated from a sub-Gaussian distribution

with o« = 1.5 and
1.0 0.7
I = ( 0.7 1.0 ) (4)

Figure 16 shows projection diagnostics, Figure 17 shows the estimation
results. See Section 6 for more info on detecting the sub-Gaussian behavior.

5.3 Simulated non-stable data

A data set was generated with independent stable components of different
a’s, so the data set is not jointly stable. The first coordinate is Gaussian
(ay, = 2) and the second is Cauchy (ap = 1), there were n = 1000 data
points.

While the projection diagnostics in Figure 18 are individually plausible,
they do not fit together in a reasonable way for a jointly stable distribution.
(The third row of this plot is similar to Figure 12.) The non joint stability
is best detected from the plot of &(t) in Figure 19, which varies from 2 to 1,
far from a flat curve that occurs in the jointly stable case.

5.4 Bivariate radar data

The radar sea clutter data was analyzed as a bivariate data set with n =
320, 000 pairs of (in-phase,quadrature) values. The one dimensional projec-
tions in different directions are indistinguishable from Figure 8, so they are
not shown. They give strong support to an underlying stable distribution.
In Figure 20, the spectral measure and the parameter functions are shown.
The index function is essentially constant (1.698 < «a(t) < 1.709), showing
that the tails die off at the same rate in all directions. Also, the scale func-
tion is essentially constant (.3975 < 7(t) < .3993) and skewness function is
essentially 0, strongly supporting an isotropic/radially symmetric fit. The
cumulative spectral measure is close to a uniform measure.

5.5 Foreign exchange rates

In Section 3, foreign exchange rates were analyzed individually. Here we will
examine the joint distribution of the German mark and the Japanese yen.
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Figure 14: Projections diagnostics for the simulated “triangle” data set.
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Figure 15: Estimation results for simulated “triangle” data set.
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Figure 16: Projections diagnostics for the simulated sub-Gaussian data set.
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Figure 17: Estimation results for simulated sub-Gaussian data set.
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Figure 18: Projections diagnostics for the simulated Gaussian and Cauchy
data set.
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Figure 19: Estimation results for simulated Gaussian and Cauchy data set.
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Figure 20: Bivariate stable fit to sea clutter data.
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The diagnostics in Figure 21 shows that a sequence of projections are similar
to Figure 5, in fact the fifth row of Figure 21 is exactly the same as Figure 5.
Except on the extreme tails, the stable fit does a good job of describing the
data.

The projection functions a(t), 3(t), v(t), and d(t) were estimated and
used to compute an estimate of the spectral measure. The results are shown
in Figure 22. The fitted spectral measure was used to plot an estimate of
the fitted bivariate density using the program described in Nolan and Rajput
(1995), shown in Figure 23. The spread of the spectral measure is spiky, and
masks a pattern that is more obvious in the density surface: the approximate
elliptical contours of the fitted density. This suggests modeling the data by
a sub-Gaussian stable distribution, a topic discussed in the next section.

6 Sub-Gaussian distributions

Since the radar clutter data is well described by a radially symmetric sta-
ble distribution and the foreign exchange data seems to be approximately
elliptically contoured, there may be interest in categorizing such stable dis-
tributions. The main practical advantage to this is that all d-dimensional
elliptically contoured stable distributions are parameterized by a and a sym-
metric, positive definite d X d matrix. Since the matrix is symmetric, there
are a total of 1 + d(d + 1)/2 parameters. This is quite different from the
general stable case, which involves an infinite dimensional spectral measure.
Even a discrete approximating measure involves a much larger number of
terms: if a “polar grid” is used with each of the angles divided up evenly
with & subintervals, then there are k%~! point masses to be estimated.

Let X be an non-singular symmetric a-stable random vector. The fol-
lowing are equivalent:

e X is elliptically contoured around the origin.

e X is sub-Gaussian, i.e. X£A4Y2G, where A ~ S(a,1,7,0;1) and G ~
N(0, Re).

e The characteristic function is Eexp(iu - X) = exp(—(uRu’)*/2), for
some symmetric, positive definite matrix R.

Computing densities for the elliptically contoured distributions is a one
dimensional problem: given the R matrix,

f(x) = (1/ det(B))ga(|Bx|"?),
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Figure 21: Projection diagnostics for the German mark and Japanese yen
exchange rates.
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Figure 22: Estimation results for the German mark and Japanese yen ex-
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Figure 23: Estimated density surface and level curves for a bivariate stable
fit to the German mark and Japanese yen exchange rates.

where

ga(v) = c/oo J0(|X|u)ud_le_“adu,
0

R = BBT, and Jy(-) is the 0 order Bessel function of the first kind. Like-
wise, computing probabilities of the natural ellipses is a one dimensional
problem once g,(-) is known.

We next describe ways of assessing a d-dimensional data set to see if
it is approximately sub-Gaussian and then estimating the parameters of a
sub-Gaussian vector.

First perform a one dimensional stable fit to each coordinate of the data
using one of the methods described above, to get estimates 6; = (&, Bi, A 31)
If the «;’s are significantly different, then the data is not jointly a-stable, so
it cannot be sub-Gaussian. Likewise, if the (;’s are not all close to 0, then
the distribution is not symmetric and it cannot be sub-Gaussian.

If the ay’s are all close, form a pooled estimate of @ = (Y0, oy)/d =
average of the indices of each component. Then shift the data by 6 =
(51, Oy, Sd) so the distribution is centered at the origin.

Next, test for sub-Gaussian behavior. This can be accomplished by ex-
amining two dimensional projections because of the following result.

Theorem 3 Let X be a d-dimensional sub-Gaussian a-stable random vector.
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Then every two dimensional projection (a;,a, € R?)
Y:()/h)/?):(al'XaaQ'X) (5)

15 a 2-dimensional sub-Gaussian a-stable random vector.

Conversely, suppose X is a d-dimensional a-stable random vector with the
property that every two dimensional projection of form (5) is non-singular
sub-Gaussian. Then X is non-singular sub-Gaussian c-stable.

Proof If X is sub-Gaussian a-stable, then there is a symmetric positive
definite matrix R such that ¢(u) = E exp(iu - X) = exp(—(uRu’)*/?). So

Eexp(i(vi,v2) - (Y1,Y2)) = FEexp(i(via; + voa0) - X)
= exp(—((via; + v225) R(v1a; + 1225)7)?)
= exp(—[(via1)R(via;)" + (via;) R(veas)”
+(va3) R(v1a1)T + (v232) R(v225)7]%/?)
= exp(—[(v1,v2) S (v1, v2)"]*"?),

for s;; = a,Ral, sy, = ayRal, 515 = so; = a;Ral. Hence Y is sub-Gaussian.

Conversely, suppose every two dimensional projection is non-singular sub-
Gaussian a-stable. Then ¢(u) > 0, so f(u) := (—In ¢(u))?* is well defined.
The assumption says every two dimensional projection of f is a non-singular,
positive definite, symmetric quadratic form: f(viu; + voun) = c1v? + cov2 +
c3v1v9. The next lemma shows that f(u) = uRu’ for some symmetric,
positive definite d x d matrix R. O

The following lemma was proved with the help of J. Hakim and D.
Kalman.

Lemma 1 Let f(u) be a real valued function on R such that every two
dimensional projection is a symmetric positive definite quadratic form on
R2. Then f is a symmetric positive definite quadratic form on RY.

Proof The hypothesis says f(viu; +vouy) = ¢1v} + cov3 + c3v109, for some
constants ¢; = ¢;(uy,uy). Substituting (vi,v9) = (1,0) shows ¢; = f(uy),
substituting (vi,v9) = (0,1) shows ¢; = f(ug), and substituting (vi,vs) =
(1,1) shows ¢3 = f(u; + ug) — f(u;) — f(uz). Hence

flonay +vpup) = f(wy)of + f(ug)vl + [f(uy +up) — f(uy) — f(uz)]vrvs (6)

44



Let e, = (1,0,0,...,0), e = (0,1,0,...,0), ..., e = (0,0,0,...,1) be the
standard unit basis vectors. Define the d x d symmetric matrix R = [r;;] with
entries Ty = f(el) and Tij = Tji = (1/2)[f(ez + ej) — f(el) — f(e])] Then (6)
says
f(vie; + vo€;) = ryvy + 105 + 210,10, (7)
We first show the case d = 3: suppose u = (ug, ug, u3). If uy # 0, then
write w = ug(u1/ug,1/2,0) — uy(0, —1/2, —u3/us) and apply (6) to show

fla) = flua(ui/u2,1/2,0) —uz(0, =1/2, —u3/us))
= w3 f(ur/uz,1/2,0) + (—u2)*£(0, =1/2, —us/uz) + uz(—us)
X [f(w1/ug, 0, —us/ug) — f(ui/usz,1/2,0) — f(0,=1/2, —u3/us)]
= ul[2f(ui/ug,1/2,0) +2f(0, —1/2, —us/ug) — f(u1/uz, 0, —us/us)]
Next apply (7) to each of the terms above to get

Fu) = 32 ((u/uz)’ri + (1/2)%r + 2(u1 /uz) (1/2)r12)
+2 ((=1/2)r22 + (—uz/ug)?rss + 2(—1/2)(—us/uz)r23)
- ((U1/U2)27”11 + (—U3/U2)27”33 + 2(Ul/u2)(—u3/u2)7"13)]

2 2 2 T
= Tnu; + T'22Uq + '33Usg + 2U1U2T12 + 2’LL1’LL37"13 + 2U2U37"23 = ulRu" .

If uy = 0, then apply (7) to u = u;(1,0,0) 4+ u3(0,0,1) to show that the form
above is valid in that case.

For d > 3, use induction with the above argument applied to u =
(g, ug, ... ug) = ug(uy/us, 1/2,us/us, . .. ug_1/us,0) — uy(0,—1/2,0,0, ...,
0, —ug/us). O

Estimating the d(d + 1)/2 parameters (upper triangular part of) R can
be done in at least two ways. For the first method, set r;; = ~2, i.e. the
square of the scale parameter of the i-th coordinate. Then estimate 7;; by
analyzing the pair (X;, X;) and take r;; = (v*(1,1)—r;—7rj;)/2, where y(1,1)
is the scale parameter of (1,1)-(X;, X;) = X;+ X,. This involves estimating
d+d(d—1)/2 =d(d+ 1)/2 one dimensional scale parameters.

For the second method, note that if X is a-stable sub-Gaussian, then
Eexp(iu - X) = exp(—(uRu”)*/?), so

[—In Eexp(iu- X)|* = uRu” = 3" ulry; + 23 wury;.

1<g

45



This is a linear function of the r;;’s which can be estimated by regres-
sion. This method may be more accurate because it uses multiple directions,
whereas the first method uses only three directions: (1,0), (0,1) and (1,1). If
a two dimensional fit has already been done, then one has already estimated
v(u) on a circular grid. Note that uRu” = 7?(u) is the square of the scale
parameter in the direction u. Sample estimates of y%(u) on a grid of u points
can be used on the left hand side above.

In both methods, checks should be made to test that the resulting matrix
R is positive definite.

The first method was used to estimate the matrix R for three of the data
sets considered above. For the simulated sub-Gaussian data set, R was given
by a multiple of (4), and the estimated matrix was

- 1.016 0.686
ft= 1176 ( 0.686 0.985 ) '

The plot of v(t) shown in the lower left corner of Figure 22 also shows

\/thT as a dashed line. It is virtually indistinguishable from the curve of
v(t), supporting the idea that a sub-Gaussian stable fit does a good job of
fitting the data.

For the radar data set

= 0.16829 0.00041
~ | 0.00041 0.16897 |-

For the German mark/Japanese yen exchange rate data,

- 5.9552  4.0783
_ —6
=10 ( 4.0783 13.9861 ) '

7 Discussion

We have shown that estimation of general stable parameters is now feasible.
The diagnostics show that several large data sets with heavy tails are well
described by stable distributions. We also showed that stable models are not
a panacea - not all heavy tailed data sets can be well described by stable
distributions.

In practice, the decision to use a stable model should be based on the
purpose of the model. In cases where a large data set shows close agreement
with a stable fit, confident statements can be made about the population.
In other cases, one should clearly not use a stable model. In intermediate
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cases, one could tentatively use a stable model as a descriptive method of
summarizing the general shape of the distribution, but not try to make state-
ments about tail probabilities. In such problems, it may actually be better
to use the quantile parameter estimates rather than ML estimates, because
the former tries to match the shape of the empirical distribution and ignores
the top and bottom 5% of the data.

We have not considered parameters that vary with time, mixture models,
etc. While we do not do so here, it is straightforward to use an information
criteria like AIC to compare a stable model to mixture models or GARCH
models for a data set. It seems likely that certain problems, e.g. the radar
sea clutter problem, have physical explanations that make a stationary model
plausible. Other problems, particularly economic time series, may very well
have time varying parameters that reflect changes in the underlying condi-
tions for that series. We cannot resolve this issue here. Our main purpose
is to make stable models a practical tool that can be used and evaluated by
the scientific community.

In multivariate problems where the dimension is large, it will be very diffi-
cult to model with a stable distribution unless there is some special structure.
If some components are independent, then they should be separated out and
analyzed alone. If the dependent components are sub-Gaussian, then Sec-
tion 6 discusses how to jointly analyze them. In general stable case, one may
try to group the components into smaller dependent groups, estimate within
groups, and then try to characterize dependence between groups. We are not
aware of work on this topic.

The program STABLE for univariate data is available on the Web at
http://www.cas.american.edu/~jpnolan. MVSTABLE, a similar pro-
gram for multivariate stable is under development.
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