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Abstract

When constructing a supply chain to supply a region where resources needed
for logistics activities are locally unavailable, it is not obvious how many nodes
should be used in the latter (“self-sustaining”) portion of the supply chain, nor
how they should be positioned. This challenge arises frequently in multimodal
supply chains, particularly for military operations, resource extraction, and hu-
manitarian aid and disaster relief. It was analyzed in the mid-20th century via a
classical model known as the jeep problem, and the solution involves nodes that
are increasingly farther apart as they get closer to the destination. However, the
solution to the jeep problem and its variants is not easily applicable to large-scale
modern logistics problems. In particular, it does not work well when establishing
and maintaining a node is costly and the quantity of resources to be delivered is
large. In this paper, we present a modified version of the jeep problem that ad-
dresses those issues, and show that the optimal structure is equally spaced nodes
over the self-sustaining portion of the supply chain. We argue that this should be
used as a baseline approach for this type of supply chain. In addition, total cost
is convex in the number of nodes, which ensures that finding a global optimum is
tractable.

1 Introduction
The cost of logistics for operations in remote areas can be enormous. Military op-
erations in Afghanistan, for instance, were faced with extremely high fuel costs, as
described by the United States Secretary of the Navy (Mabus 2009):

”It turns out that when you factor in the cost of transportation to a coastal facility
in Pakistan – or airlifting it to Kandahar – and then you add the cost of putting it in a

1



truck, guarding it, delivering it to the battlefield, and then transferring that one gallon
into a piece of equipment that needs it – in extreme cases that gallon of gasoline could
cost up to $400.”

These costs are so large, in part, because the resources (fuel, in this case) must
be transported via a self-sustaining supply chain (SSSC): a supply chain in which at
least one resource required for logistics activities is not locally available, and is there-
fore provided via the supply chain itself. For example, if a truck is driving back and
forth between the last two nodes, and fuel cannot be obtained at either node, the fuel
consumed by the truck must itself be transported to the second-to-last node. Self-
sustainment leads to a multiplier effect on resource requirements, as shown by Regnier
et al. (2015): a multiplier can be associated with each stage of the supply chain, and
the overall resource requirement is their product, multiplied by the end-user demand
for the resource. The multipliers are determined by the lengths of the stages and the
characteristics of the vehicles, including speed, capacity, and rate of resource consump-
tion.

This phenomenon is not unique to combat or military operations. SSSCs are preva-
lent in humanitarian aid and disaster relief (HADR), as explored by Apte et al. (2016).
The need for logistics preparation is widely recognized in HADR; see, for instance,
Van Wassenhove (2006), Kovács and Spens (2007), Holguı́n-Veras et al. (2012), and
Çelik et al. (2012). SSSCs are also common in drilling operations in undeveloped re-
gions, and are one of many logistical challenges involved with such endeavors; see, for
instance, Heimer et al. (1978), Deerhake et al. (1981), Gruenhagen et al. (2002), and
Shafer (2007).

What should a supply chain for these operations look like? The classical answer to
this question is provided by Fine (1947). He presents it as a jeep problem1, in which
a vehicle (a jeep) must cross a desert whose width is greater is than the vehicle can
travel on a single tank of fuel. Solving the jeep problem is a matter of determining
the optimal locations at which to establish nodes where fuel may be dropped off and
stored. Fine’s solution is mathematically elegant, but relies on a crucial assumption that
it is costless to establish and maintain a node. While perfectly reasonable for a jeep
crossing a desert, that assumption does not apply to modern global logistics challenges;
fuel and other resources generally cannot be left unattended and unprotected. Facilities,
personnel, and materials at transfer points are often necessary. This paper re-formulates
and solves the jeep problem without the assumption of costless nodes, which leads to
a qualitatively different result that is both simpler and more appropriate for large-scale
real-world applications.

In most modern applications, the jeep problem does not arise in isolation. Rather, it
serves as the latter portion of a multimodal supply chain, and is carried out by a differ-
ent vehicle type than those used in earlier portions. There are a few settings in which
this exact instance of the jeep problem arises frequently. In military operations, the
jeep problem covers only the area that cannot receive external logistical support. For
example, it was common for larger American bases in Afghanistan to receive supplies
via airdrop, while subsequent delivery to smaller outposts was carried out by ground

1This problem has also been referred to as crossing the desert (Alway 1957, Gardner 1994), and an
exploration problem (Ball and Coxeter 2016).
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convoys (Dubbs 2011). In disaster relief settings, the jeep problem describes only the
portion of the supply chain occurring in the disaster-impacted region. For example,
following the 2010 Haiti earthquake, planes and ships delivered large quantities of
supplies to the island, but subsequent distribution by truck was an enormous logisti-
cal challenge (Holguı́n-Veras et al. 2012). A lack of coordination between these dis-
tinct parts of the supply chain is frequently a major obstacle in disaster relief logistics
(Kovács and Spens 2007). Maghfiroh and Hanaoka (2020) advocate for multimodal
distribution for Indonesia in a disaster relief study.

However, the general problem is also an important one to multimodal transportation
more broadly, as it affects planning for any routes to remote areas. In a review of
multimodal freight transportation planning, SteadieSeifi et al. (2014) offer multiple
reasons why SSSCs are increasingly important in this domain. Newer markets and
customer bases are growing worldwide, and there is substantial environmental concern
as well. The number and locations of nodes are often key considerations when new
infrastructure is developed.

There are several of examples of recent studies of costs and logistical considera-
tions in multimodal supply chains and networks where node structure is paramount.
Kou et al. (2022) analyze last mile delivery in rural China, arguing for the use of dif-
ferent distribution modes to improve efficiency and reduce cost. Wang et al. (2020)
analyze several attributes of concern to decision makers involved in multimodal trans-
port between Wuhan and Berlin, including environmental concerns and transportation
cost. One of their recommendations is to establish large container distribution centers
for railway transport. Du et al. (2017) analyze road and river freight supply routes in
northern Canada where water level uncertainty has a substantial impact; one of their
stated goals is to provide insights about where infrastructure improvements would be
the most beneficial. Kim et al. (2017) analyze the use of drones to provide the final
stage of health care product delivery in rural areas, where the drone center locations
are the set of decision variables in the model.

Multimodal supply chain structure is an ongoing challenge in biofuel as well. Dif-
ferent vehicles are used for long-haul and short-haul delivery, and the number and lo-
cations of intermediate nodes are key strategic decisions (Xie et al. 2014, Zhang et al.
2016).

An inadequate set of intermediate nodes is a common impediment to economic de-
velopment of remote areas. For instance, Rahmatullah (2006) examines South Asian
transportation systems, including those supplying less developed mountainous regions,
and finds that multimodal transportation between countries can be extraordinarily slow;
one barrier (of many) in the case of rail transportation is inadequate physical facili-
ties at interchange points. Islam et al. (2006) explores multimodal freight transport
in Bangladesh, and cites a lack of inland container-handling facilities as a major hin-
drance. Spandonide (2014) studies several types of transportation systems in very re-
mote parts of Australia, and argues that the development of transport infrastructure
in those areas would yield substantial economic benefits. In a study focused mostly
on Ghana, Okyere et al. (2019) advocate for individual African countries to integrate
multimodal transportation systems in several ways, one of which is “by developing
transport links and nodes” (p. 169). For a helpful and more general review of the eco-
nomic impacts of infrastructure development for several modes of transportation, see
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Figure 1: A notional illustration of the solution to Fine’s jeep problem.

Lakshmanan (2011).
A brief summary of Fine’s solution to the jeep problem is as follows. We refer to

the arc between a pair of adjacent nodes as a stage (Phipps 1947), where the length
of the stage is simply the distance between the two nodes. The first stage includes the
starting point, and the last stage includes the destination:

In the solution, the lengths of the stages increase as they get closer to the destina-
tion; if n total stages are used, the length of the ith stage is 1

2(n−i)+1 , where the distance
the jeep can travel on a single tank of fuel is normalized to 1. The length of the final
stage is 1; it is traversed only once. A notional illustration of this set of stages is shown
in Figure 1.

Given the importance of the problem, it is somewhat surprising that Fine’s work on
it is not more widely known. A likely explanation is the impracticality of the solution.
Several other researchers have formulated and solved extensions of the jeep problem
(Phipps (1947), Franklin (1960), Gale (1970), Hausrath et al. (1995), and Wenlei et al.
(2010)); all of these papers retain the costless nodes assumption and reach solutions
that are analogous to Fine’s.

The present paper provides a practical solution to the jeep problem that can serve
as a baseline structure for remote supply. It is adapted for the sake of applicability to
real-world SSSCs. It is very similar to the original jeep problem, but has the following
three distinctions:

First, we require that all vehicles must be able to return once the fuel is delivered.
A generalization of Fine’s model can address this change easily, as discussed by Phipps
(1947).

Second, Fine’s jeep problem does not require any fuel to reach the destination.
Modifying Fine’s solution to account for this difference is straightforward, though as
we will see, it can result in an impractically large number of stages.

Third, and most crucially, Fine assumes that there is no relevant cost associated with
establishing and maintaining a node. Assuming costless nodes can lead to a very large
optimal number of them, but no simple modification has been offered to incorporate
node costs. In fact, Fine posits that with costly nodes, equally spaced nodes might be
cheaper, but that including such a cost would lead to “an entirely new problem” (p. 31).

The goal of the present paper is to model and solve this new problem.

2 Model
The objective is to minimize the total cost associated with transporting fuel from a
source to a destination, given a particular type of available transport vehicle. The model
uses the following parameters:
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• D: total distance from the source to the destination

• M: total demand for fuel at the destination

• c: total cost of establishing and maintaining a node

• g: vehicle capacity

• r: rate at which a vehicle consumes fuel (per unit distance)

To reduce notational burden, c is expressed in the same units as g and M; i.e. units of
fuel rather than money. It could easily be converted to a monetary cost by multiplying
by the per-unit price of fuel. It is important to note again that we are modeling the
self-sustaining portion at the end of a larger supply chain. The per-unit price of fuel is
partly determined by the previous mode(s) of transportation. Depending on the nature
of the supply chain, it may be influenced by the market, an agreement with a contractor,
organizational policy, or some combination thereof (Regnier et al. 2015). The model
expresses all of the costs in terms of quantities of fuel for ease of exposition, but the
actual cost of that fuel is heavily dependent on the rest of the supply chain.

We will also let N denote an upper bound on the number of stages; N can be ar-
bitrarily large, and is included only for convenience in formulating the optimization
problem.

The decision can then be framed as choosing the number and lengths of stages,
or equivalently as choosing the number and locations of the nodes. We will use the
former approach and let x1, . . . ,xN denote the stage lengths. Thus, the quantity of fuel
burned per vehicle round trip on stage i is 2rxi. Note that not all N stage lengths must
be positive. If there are n positive stage lengths, we will describe this portion of the
supply chain as having n stages (or, equivalently, as having n+1 nodes).

3 Analysis and Results
In this section, we first examine the case of costless nodes, and show that introducing a
simple relaxation of the problem will dramatically change the solution. Then, we allow
c > 0 and obtain a more intuitive result.

3.1 Costless Nodes
In the simple case where c = 0, the optimization problem can be expressed as:

min
x1,...,xN

N

∑
i=1

2rxiki

s.t.:
N

∑
i=1

xi = D

xi ≥ 0 ∀i

xi <
g
2r
∀i,

(1)
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where:

ki =

⌈
M+∑

N
j=i+1 2rx jk j

g−2rxi

⌉
(2)

is the number of round trips required on stage i. The numerator is the quantity of fuel
that must be delivered to the end of stage i, and the denominator is the quantity that
can be delivered on each trip. (Note also that stages of length 0 incur a cost of 0.) For
M = 0, this problem would be equivalent to case (b) in Section 2 of Phipps (1947);
a vehicle would simply have to get to the destination, with all vehicles being able to
return. The problem is equivalent whether the entire process is carried out by a single
vehicle or split amongst a fleet of vehicles.

The problem given by (1) can be solved using the general guidelines provided by
Phipps (1947). The length xn of the final stage will be such that kn is minimized and
xn is maximized for that value of kn. The minimum feasible value of kn is dM/ge, with
M/dM/ge being delivered on each round trip, implying that:

xn =
g−M/dM/ge

2r
. (3)

The quantity of fuel burned on each round trip on stage n is the numerator of (3),
and thus the total quantity of fuel that must be delivered to the beginning of stage n
is dM/geg. The length of each preceding stage is determined similarly. It turns out
that the total quantity of fuel burned on each stage, except for the final one2, is exactly
equal to the total amount of fuel delivered to the end of that stage. The stage lengths,
in backward order from stage n− 1 to stage 1, are the terms of the harmonic series
beginning with the 1+ knth term, multiplied by g

4r2 . As we will see in Section 3.3, this
can lead to a very large number of stages.

However, a different approach to solving the problem yields additional insight. The
first step is to assume that M� g; that is, the amount of fuel to be delivered is much
larger than the capacity of one vehicle. Because this will necessarily lead to many
round trips on each stage, we will allow non-integer values of ki when optimizing. We
do this simply by no longer applying the ceiling function. Thus, the expression for ki
will be continuous and differentiable.

This leads to a drastically different result:

Lemma 1. If nodes are costless and non-integer numbers of round trips are permitted,
then the optimal number of stages is infinite.

The proof of Lemma 1 is in the Appendix, but the intuition is straightforward:
splitting a stage into two smaller stages always reduces the total quantity of fuel burned,
and there is no cost to doing so. It is specifically the requirement of integer numbers of
round trips that leads to Fine’s solution when nodes are costless.

2If the required number of stages covers a distance greater than D, then the first stage is shortened as well
to account for that difference.
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3.2 Costly Nodes
Given Lemma 1, we now examine the case where c > 0, as expressed by the following
model:

min
x1,...,xN

N

∑
i=1

cXi +2rxiki

s.t.:
N

∑
i=1

xi = D

xi ≥ 0 ∀i

xi <
g
2r
∀i,

where: ki =
M+∑

n
j=i+1 2rx jk j

g−2rxi
for xi > 0

Xi =

{
0,xi = 0
1,xi > 0

(4)

and N is a number large enough such that a solution with more than N stages is imprac-
tical, as previously. This optimization problem is difficult to solve directly. However,
we can derive a property of the solution that will both facilitate the process and serve
as a useful result itself.

It will be helpful to introduce the variable γi: the ratio of the amount of fuel burned
on stage i to the amount of fuel transported to the end of stage i. It is defined as follows:

γi =
2rxi

g−2rxi
, (5)

and is related to the fuel multiplier used by Regnier et al. (2015). Before finding a
general solution to (4), we first state the following theorem:

Theorem 1. Given a fixed number of stages n with non-zero length, the set of nodes
that yields the minimum total fuel cost is n−1 equally spaced nodes, or equivalently n
stages of length D/n.

A proof is given in the Appendix. The intuition behind it is that γi is increasing and
convex in xi, and the relationship between the γ terms and total cost is such that when a
fixed total distance is covered by two stages, cost is minimized when their lengths are
equal.

Thus, for any given number of stages, we need to consider only the alternative of
equal length stages. Given n stages of equal length, note that γ1 = · · · = γn. We will
write this value as γ(n). It is decreasing in n; as the number of stages increases, the
efficiency of an individual stage increases. Given Theorem 1, we are able to state that
the lowest total cost achievable with n stages is:

cn+
(
1+ γ(n)

)n M−M. (6)

The derivation of (6) is in the Appendix, but its interpretation is straightforward. First,
cn is the total node costs. The term in parentheses is the factor by which each stage is
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increasing the total fuel requirement (and this occurs n times). Finally, we subtract M
to avoid including the end-user demand, as we are trying to minimize only the supply
chain costs.

We can now simplify the full optimization problem to a obtain a problem with
one decision variable (the number of stages) rather than a problem with N decision
variables. The resulting optimization problem is:

min
n

cn+
(
1+ γ(n)

)n M−M

s.t. n >
2rD

g
,

where γ(n) =
2D/n

g−2rD/n
=

2rD
ng−2rD

.

(7)

The constraint on n ensures that the stages are sufficiently short for a vehicle to com-
plete a round trip and deposit a positive quantity of fuel. With this simpler model, we
are able to state the following theorem:

Theorem 2. When stages must be of equal length, total cost is convex in the number
of stages.

The proof is given in the Appendix. Theorem 2 implies that finding the optimal
value of n can be eased by treating n as real-valued; a solution falling between integers
b and b+ 1 implies that the optimal arrangement is either b or b+ 1 equally spaced
nodes, which can be compared directly.

3.3 Comparison of Results
Now that we have established a new method for determining an optimal number and ar-
rangement of nodes, we can produce and compare results from this approach and from
the traditional method of requiring integer numbers of round trips on each stage and
assuming nodes are costless. In this section, we conduct several one-way sensitivity
analyses. For each method, we illustrate the effect of D, M, and c on both the optimal
number of stages and the total cost. The results are shown in Figure 2. (Sensitivity
results for r and g are not shown; those parameters are characteristics of the vehicles,
and their effects are qualitatively similar to those of D and M.)

The sensitivity analyses use the following set of parameter values as a baseline:
D = 1000, M = 4000, c = 10000, g = 100, r = 0.1. The first row of charts in Figure
2 shows how the number of stages is affected in each method as D, M, and c change.
When either D or M is large, the traditional approach of assuming costless nodes and
requiring integer numbers of round trips leads to an enormous number of stages, while
the method presented in this paper involves far fewer.

The second row of Figure 2 shows how each parameter affects total cost. A very
large difference in total cost is observed when M is large. However, while the difference
in total cost between the two methods is increasing in D, it is much less sensitive to D
than to M. This suggests that the benefit of this paper’s approach is driven more by a
high demand than a long distance.
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Figure 2: The effects of distance, demand, and node cost on the results of both methods

The third chart in each row shows the effect of node cost on the results. In the
“integer round trips” method, costless nodes are assumed, so the structure of the supply
chain is unaffected; the number of nodes is 20 regardless of node cost. However, those
node costs are still incurred, which is why the relationship between c and total cost is
linear. Unsurprisingly, ignoring node costs is very costly when they are large.

Recall that node cost is measured in the same units as fuel cost, which is implicitly
normalized to 1 per unit. Thus, the right-hand charts also provide information about
sensitivity to fuel cost, since these are the only two types of costs in the model. If
there are additional logistical burdens to transport fuel to the start of the self-sustaining
portion of the supply chain, that is tantamount in this model to a reduction in node
cost. The less efficient the previous mode(s) of transportation, the greater the optimal
number of nodes.

It is worth noting that all of the actual costs for the “equally spaced nodes” method
will be slightly higher than shown in these charts, because a non-integer number of
round trips is not possible in reality. However, the additional cost is very small; in the
baseline scenario, the smallest number of round trips on a stage is 66.67, and rounding
that up to 67 results in an additional immediate fuel cost of 13.3. (Note that the costs
in Figure 2 are in thousands.) Regardless of how the nodes are arranged, it is likely
in practice that vehicles will occasionally be less than completely full when leaving a
node, or not deposit the precise quantity of fuel prescribed by the model, leading to
small increases in the number of round trips required.

4 Discussion
This paper explores a modified version of the jeep problem in which nodes are costly,
and solves the problem by relaxing the model to allow for non-integer numbers of
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round trips on each stage. This version of the problem is likely more applicable to
modern large-scale supply in remote areas. Notably, the structure of the solution is
different; cost is minimized with equally spaced nodes. In addition, cost is convex in
the number of nodes, which greatly eases the search for a global optimum.

It is important to note that the model used in this paper still reflects a fairly simple
logistics problem. For instance, the same type of vehicle is used throughout the entire
supply chain, and the rate at which it consumes resources is constant throughout the
chain as well. The solution is meant to serve as a starting point or baseline, not to be
applied directly to a specific supply chain. For example, in HADR applications, it is
very common for last mile distribution to be a significant challenge (Balcik et al. 2008,
Beresford and Pettit 2013, John 2021), and transportation close to the destination is
often much more inefficient. In such scenarios, it would likely make sense to use many
short stages near the end of the supply chain.

This paper’s model also considers only a route from a single source to a single
destination. It is possible that expanding the problem to a transportation network with
multiple sources and destinations that can share nodes would yield new results or in-
sights. In addition to the mathematical expansion of the problem, this would increase
the overall complexity of the supply chain, which would likely have further implica-
tions; see, e.g., Vachon and Klassen (2002), Choi and Krause (2006), and Craighead
et al. (2007).

Finally, there is a mathematical point that merits some discussion. Consider the
limit of the solution in this paper as c goes to zero. Even with infinitesimally small
values of c, the optimal arrangement will still be equally spaced nodes; that is, the
solution does not converge to the solution provided by Fine for c = 0. This disparity is
due to allowing non-integer numbers of round trips. That is a trivial modeling choice
when the amount of fuel to be delivered is large and many round trips are required on
each stage, but it does distort results noticeably when the number of round trips on
a stage is very low. Costless nodes and allowing non-integer numbers of round trips
can be viewed as two possible modeling choices. The former leads to Fine’s solution,
and the latter leads to this paper’s solution. In practice, the modeling approach that is
associated with a smaller error for a given problem should be used. If establishing and
maintaining a node is cheap and the quantity of resources to be delivered is small, then
it is certainly possible for Fine’s solution to be preferable.
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Appendix
Proof of Lemma 1. Assume the number of stages is finite, and consider an arbitrary
stage i with associated xi > 0 that must deliver Mi units of fuel to stage i+ 1. The
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amount of fuel burned on stage i is 2rxiki, or:

2rxi

g−2rxi
Mi.

This means the quantity of fuel that must be delivered to the beginning of stage i is:

1+
2rxi

g−2rxi
Mi,

or: g
g−2rxi

Mi.

This coefficient of Mi is the “multiplier” for stage i, per Regnier et al. (2015). It is
given that name because these terms are multiplicative; the total fuel requirement for
the chain is: (

n

∏
i=1

g
g−2rxi

)
M.

Now, split stage i into two equal-length smaller stages by adding an intermediate node
at the midpoint. To establish the Lemma, we need only show that:(

g
g− rxi

)2

<
g

g−2rxi
,

that is, that the quantity of fuel required at the start of stage i is lower when it is split
into two equal-length stages. Since both denominators are positive per the constraints
on xi, we can multiply each side by each denominator and then divide by g, obtaining:

g(g−2rxi)< (g− rxi)
2,

or:
g2−2grxi < g2−2grxi +(rxi)

2,

which simplifies to:
(rxi)

2 > 0.

Since neither the rate of fuel consumption nor the stage length is zero, this condition
always holds, which establishes the Lemma.

Proof of Theorem 1. The quantity of fuel burned on stage i is γiMi, where Mi is the
quantity of fuel to be delivered to the end of the stage. It is straightforward to observe
that Mi−1 = (1+ γi)Mi for i > 1. Applying this logic repeatedly from the end of the
supply chain backward, we can state more generally that the quantity of fuel burned on
stage i is:

γi

(
∑

A⊆{i+1,...,n}
∏
z∈A

γz

)
M.
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Summing these costs over all stages yields the following total quantity of fuel burned
by the supply chain (denoted as C):

C =

(
∑

/0⊂A⊆{1,...,n}
∏
z∈A

γz

)
M.

Consider the equally spaced nodes arrangement, where each stage has length D/n. We
will show that no deviation from this alternative can result in a lower cost. Because
the sum of the lengths must be D, any increases must be accompanied by decreases
of equal magnitude. Consider an arbitrary pair of stages i and j (with i < j), and fix
the lengths of the other n− 2 stages. We can determine the effect of changes in their
lengths on total fuel requirement by taking the total derivative of C and examining only
the terms involving changes in xi and x j. Note that dx j =−dxi, because the sum of xi
and x j is fixed. This results in:

dC
dxi

=
∂C
∂xi

+
∂C
∂x j

dx j

dxi
=

∂C
∂xi
− ∂C

∂x j
.

It will be convenient to compute these partial derivatives of C with respect to γi and γ j:

dC
dxi

=
∂C
∂γi

dγi

dxi
− ∂C

∂γ j

dγ j

dx j
.

Consider the possible solution xi = x j. In this case, it is straightforward to show that
dC = 0. Thus, if C is decreasing in xi when xi < x j and increasing in xi when xi > x j,
we will be able to conclude that for arbitrary lengths of the other n−2 stages, total cost
is minimized when xi = x j. Writing out all of the derivatives yields:

dC
dxi

=

(
∑

A⊆{1,...,i−1,i+1,...,n}
∏
z∈A

γz

)
M

2rg
(g−2rxi)2

−

(
∑

A⊆{1,..., j−1, j+1,...,n}
∏
z∈A

γz

)
M

2rg
(g−2rx j)2 ,

which, after simplifying and factoring common terms, yields:

dC
dxi

= 4r2g2M

(
∑

/0⊂A⊆{1,...,i−1,i+1,..., j−1, j+1,...,n}
∏
z∈A

γz

)[
xi− x j

(g−2rxi)2(g−2rx j)2

]
.

The term outside the square brackets is positive, and the denominator of the term inside
the square brackets is positive as well. Thus, the sign of the derivative is determined
by xi− x j; the total quantity of fuel burned is increasing when xi > x j and decreasing
when xi < x j. Therefore, we can conclude that the minimum total fuel cost is achieved
when xi = x j.

Since i and j were chosen arbitrarily, it must be true that if any two stages must
cover some (feasible) fixed total distance, it is done with minimum fuel cost by choos-
ing equal lengths for the two stages. Thus, any x1, . . . ,xn such that x1 = · · · = xn does
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not hold must be suboptimal, because the total fuel cost can be reduced by equalizing
the lengths of two unequal stages. Thus, it must be true that the optimal lengths satisfy
x1 = · · ·= xn = D/n, establishing the Theorem.

Derivation of (6). As shown in the proof of Theorem 1, the total quantity of fuel burned
by the supply chain is: (

∑
/0⊂A⊆{1,...,n}

∏
z∈A

γz

)
M.

However, since all stages are now of equal length, every instance of γz can be replaced
by γ(n). Adding the node cost cn and simplifying the total fuel cost yields:

C = cn+

(
∑

/0⊂A⊆{1,...,n}
γ
|A|
(n)

)
M.

(For notational convenience, we modified the interpretation of C slightly here to reflect
the total supply chain cost, i.e. including node costs, as opposed to the fuel costs only.)
Alternatively, this can be written as:

C = cn+

(
n

∑
i=1

(
n
i

)
γ

i
(n)

)
M.

This summation is the binomial expansion of
(
1+ γ(n)

)n, with the constant term of 1
removed. Thus, total cost can be rewritten as:

cn+
((

1+ γ(n)
)n−1

)
M,

or:
cn+

(
1+ γ(n)

)n M−M.

Proof of Theorem 2. The total cost for n equal-length stages is given by:

cn+
(
1+ γ(n)

)n M−M.

Taking the derivative with respect to n yields:

c+
(
1+ γ(n)

)n

(
ln(1+ γ(n))+

1
1+ γ(n)

nγ
′
(n)

)
M, (8)

It will be helpful to compute γ
′
(n), which is:

γ
′
(n) =

−2rgD

(ng−2rD)2

After expanding the rightmost γ(n) term in (8), this allows us to simplify the derivative
of total cost to:

c+
(
1+ γ(n)

)n (ln(1+ γ(n))− γ(n)
)

M,
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The second derivative is then:

(
1+ γ(n)

)n

[
γ
′
(n)

1+ γ(n)
− γ

′
(n)+

(
ln(1+ γ(n))− γ(n)

)2

]
M,

Since
(
1+ γ(n)

)n and M are both positive, we need only show that the expression in
the square brackets is positive. By expanding γ(n) and γ

′
(n), the first two terms can be

combined and simplified, yielding:[
−γ(n)γ

′
(n)

1+ γ(n)
+
(
ln(1+ γ(n))− γ(n)

)2

]
.

Both of these terms are positive as well (note that γ
′
(n) is negative), which means the

second derivative is positive, and thus total cost is convex in the number of stages,
establishing the Theorem.
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