AUTOMORPHISMS OF MODELS OF ARITHMETIC

ALI ENAYAT

Sixth Panhellenic Conference

Volos, Greece

July 8, 2007

Prehistory

- (ℕ, <) is rigid. Indeed any well-founded extensional relational structure is rigid.
- **Question** (Hasenjäger): Is there a model of PA with a nontrivial automorphism?
- Equivalent Question: Is there a model of ZF \ {Infinity}∪{¬Inf} with a nontrivial automorphism?

The Answer

 Theorem (Ehrenfeucht and Mostowski). Given an infinite model M and a linear order L, there is an elementary extension M^{*}_L of M such that

 $Aut(\mathbb{L}) \hookrightarrow Aut(\mathfrak{M}^*_{\mathbb{L}}).$

The Standard Proof of EM

abrakadabra (Ramsey's Theorem)

ajji majji latarrajji (Compactness Theorem)

EM with one ABRAKADABRA

- $\mathfrak{M} = (M, \cdots)$ is a infinite structure, and \mathbb{L} is a linear order.
- Fix a nonprincipal ultrafilter \mathcal{U} over $\mathcal{P}(\mathbb{N})$.
- One can build the L-iterated ultrapower of \mathfrak{M} modulo $\mathcal{U},$ denoted $\mathfrak{M}^*_{\mathcal{U},\mathbb{L}},$ with 'bare hands'.
- Theorem. There is a group embedding $j \mapsto \hat{j}$ of $Aut(\mathbb{L})$ into $Aut(\mathfrak{M}^*_{\mathcal{U},\mathbb{L}})$ such that for every fixed point free j,

 $fix(\hat{\jmath}) = M.$

Skolem Ultrapowers (1)

- Suppose 𝔅 has definable Skolem functions (e.g., 𝔅 is a RCF, or a model of PA, or a model of ZF + V=OD).
- The Skolem ultrapower $\mathfrak{M}^*_{\mathcal{U}}$ can be constructed as follows:

(a) Let \mathcal{B} be the Boolean algebra of \mathfrak{M} definable subsets of M, and \mathcal{U} be an ultrafilter over \mathcal{B} .

(b) Let \mathcal{F} be the family of functions from M into M that are parametrically definable in \mathfrak{M} .

Skolem Ultrapowers (2)

• (c) The universe of
$$\mathfrak{M}^*_{\mathcal{U}}$$
 is $\{[f]: f \in \mathcal{F}\},$

where

$$f \sim g \iff \{m \in M : f(m) = g(m)\} \in \mathcal{U}$$

(d) Define functions, relations, and constants on $\mathfrak{M}^*_{\mathcal{U}}$ as in the usual theory of ultraproducts.

• The analogue of the Łoś theorem is true in this context as well, therefore

$$\mathfrak{M} \prec \mathfrak{M}^*_{\mathcal{U}}.$$

Skolem Ultrapowers (3)

• Theorem (MacDowell-Specker, 1961)

Every model of *PA* has an elementary end extension.

 Idea of the Proof : Construct U with the property that every definable map with bounded range is constant on a member of U. Then,

$$\mathfrak{M} \prec_e \mathfrak{M}^*_{\mathcal{U}}.$$

• The construction of \mathcal{U} above is a more refined version of the proof of the existence of '*p*-points' in $\beta \omega$ using CH.

Skolem-Gaifman Ultrapowers (1)

- For each parametrically definable $X \subseteq M$, and $m \in M$, $(X)_m = \{x \in M : \langle m, x \rangle \in X\}$.
- \mathcal{U} is an *iterable* ultrafilter if for every $X \in \mathcal{B}$, $\{m \in M : (X)_m \in \mathcal{U}\} \in \mathcal{B}.$
- **Theorem** (Gaifman, 1976)

(1) Every countable model of PA carries an iterable \mathcal{U} .

(2) If \mathcal{U} is iterable, then the \mathbb{L} -iterated ultrapower of \mathfrak{M} modulo \mathcal{U} can be meaning-fully defined.

Skolem-Gaifman Ultrapowers (2)

- Let $\mathfrak{M}^*_{\mathcal{U},\mathbb{L}}$ be the $\mathbb{L}\text{-iterated}$ ultrapower of \mathfrak{M} modulo $\mathcal{U}.$
- Theorem (Gaifman, 1976)

(1) If \mathcal{U} is iterable, and \mathbb{L} is a linear order, then

$$\mathfrak{M}\prec_{e}\mathfrak{M}^{*}_{\mathcal{U},\mathbb{L}}.$$

(2) Moreover, if \mathcal{U} is a 'Ramsey ultrafilter' over \mathfrak{M} , then there is an isomorphism

 $j \longmapsto \hat{\jmath}$

between $Aut(\mathbb{L})$ and $Aut(\mathfrak{M}^*_{\mathbb{L}}; M)$ such that

$$fix(\hat{j}) = M$$

for every fixed-point-free j.

Two Corollaries of Gaifman's Theorem

- **Corollary 1.** There are rigid models of *PA* of arbitrarily large cardinalty.
- Corollary 2. For every \mathbb{L} , there is some model \mathfrak{M} of PA such that $Aut(\mathfrak{M}) \cong Aut(\mathbb{L})$.

Schmerl's Generalization

- **Theorem** (Schmerl, 2002) *The following* are equivalent for a group *G*.
 - (a) $G \leq Aut(\mathbb{L})$ for some linear order \mathbb{L} .

(b) G is left-orderable.

(c) $G \cong Aut(\mathfrak{A})$ for some linearly ordered structure $\mathfrak{A} = (A, <, \cdots)$.

(d) $G \cong Aut(\mathfrak{M})$ for some $\mathfrak{M} \models PA$.

(e) $G \cong Aut(\mathbb{F})$ for some ordered field \mathbb{F} .

 Schmerl's methodology: using a partition theorem of Nešteřil-Rödl/Abramson-Harrington to refine Gaifman's technique. Countable Recursively Saturated Models (1)

- **Theorem** (Schlipf, 1978). Every countable recursively saturated model has continuum many automorphisms.
- Theorem (Schmerl, 1985)

(1) If a countable recursively saturated model \mathfrak{M} is equipped with a ' β -function'' β , then for any countable linear order \mathbb{L} without a last element, \mathfrak{M} is generated by a set of indiscernibles of order-type \mathbb{L} (via β).

(2) Consequently, there is a group embedding from $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$. Countable Recursively Saturated Models (2)

- Theorem. (Smoryński, 1982) If \mathfrak{M} is a countable recursively saturated model of PA and I is a cut of \mathfrak{M} that is closed under exponentiation, then there are continuum many $j \in Aut(\mathfrak{M})$ such that I is the longest initial segment of \mathfrak{M} that is pointwise fixed by j
- Question. Can Smoryński's theorem be combined with part (2) of Schmerl's theorem above?

Paris-Mills Ultrapowers

• The *index set* is of the form

$$\overline{c} = \{0, 1, \cdot \cdot \cdot, c - 1\}$$

for some nonstandard c in \mathfrak{M} .

- The family of functions used, denoted \mathcal{F} , is $(\bar{}^{\bar{c}}M)^{\mathfrak{M}}$.
- The Boolean algebra at work will be denoted $\mathcal{P}^{\mathfrak{M}}(\overline{c})$.
- This type of ultrapower was first considered by Paris and Mills (1978) to show that one can arrange a model of *PA* in which there is an externally countable nonstandard integer *H* such that the external cardinality of *Superexp*(2, *H*) is of any prescribed infinite cardinality.

- \mathcal{U} is *I-complete* if for every $f \in \mathcal{F}$, and every $i \in I$, if $f : \overline{c} \to \overline{i}$, then f is constant on a member of \mathcal{U} .
- \mathcal{U} is *I*-tight if for every $f \in \mathcal{F}$, and every $n \in \mathbb{N}^+$, if $f : [\overline{c}]^n \to M$, then there is some $H \in \mathcal{U}$ such either f is constant on H, or there is some $m_0 \in M \setminus I$ such that $f(\mathbf{x}) > m_0$ for all $\mathbf{x} \in [H]^n$.
- \mathcal{U} is *I-conservative* if for every $n \in \mathbb{N}^+$ and every \mathfrak{M} -coded sequence $\langle K_i : i < c \rangle$ of subsets of $[\overline{c}]^n$ there is some $X \in \mathcal{U}$ and some $d \in M$ with $I < d \leq c$ such that $\forall i < d$ X decides K_i , i.e., either $[X]^n \subseteq K_i$ or $[X]^n \subseteq [\overline{c}]^n \setminus K_i$.

Desirable Ultrafilters

Theorem. 𝒫^𝔅(𝔅) carries a nonprincipal ultrafilter 𝒰 satisfying the following four properties :

(a) *U* is *I*-complete;

(b) \mathcal{U} is *I*-tight;

(c) $\{Card^{\mathfrak{M}}(X) : X \in \mathcal{U}\}$ is downward cofinal in $M \setminus I$;

(d) \mathcal{U} is *I*-conservative.

Fundamental Theorem

- Theorem. Suppose I is a cut closed exponentiation in a countable model of PA,
 L is a linearly ordered set, and U satisfies the four properties of the previous theorem. One can use U to build an elementary *M*^{*}_L of *M* that satisfies the following:
- (a) $I \subseteq_{e} \mathfrak{M}^{*}_{\mathbb{L}}$ and $SSy(\mathfrak{M}^{*}_{\mathbb{L}}, I) = SSy(\mathfrak{M}, I)$.

(b) \mathbb{L} is a set of indiscernibles in $\mathfrak{M}^*_{\mathbb{L}}$;

(c) Every $j \in Aut(\mathbb{L})$ induces an automorphism $\hat{j} \in Aut(\mathfrak{M}^*_{\mathbb{L}})$ such that $j \mapsto \hat{j}$ is a group embedding of $Aut(\mathbb{L})$ into $Aut(\mathfrak{M}^*_{\mathbb{L}})$;

(d) If $j \in Aut(\mathbb{L})$ is nontrivial, then $I_{fix}(\hat{j}) = I$.

Combining Smoryński and Schmerl

- Theorem. Suppose \mathfrak{M} is a countable recursively saturated model of PA and I is a cut of \mathfrak{M} that is closed under exponentiation. There is a group embedding $j \mapsto \hat{j}$ from $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M})$ such that for every nontrivial $j \in Aut(\mathbb{Q})$ the longest initial segment of \mathfrak{M} that is pointwise fixed by \hat{j} is I.
- **Proof:** Use part (c) of the previous theorem, plus the following isomorphism theorem.
- Theorem. Suppose I is a cut closed under exponentiation in a countable recursively saturated model \mathfrak{M} of PA, and \mathfrak{M}^* is a cofinal countable elementary extension of \mathfrak{M} such that $I \subseteq_e \mathfrak{M}^*$ with $SSy(\mathfrak{M}, I) =$ $SSy(\mathfrak{M}^*, I)$. Then \mathfrak{M} and \mathfrak{M}^* are isomorphic over I.

Key Results of Kaye, Kossak, Kotlarski, and Schmerl

• Theorem (K³, 1991). Suppose \mathfrak{M} is a countable recursively saturated model of *PA*.

(1) If \mathbb{N} is a strong cut of \mathfrak{M} , then there is some $j \in Aut(\mathfrak{M})$ such that every undefinable element of \mathfrak{M} is moved by j.

(2) If $I \prec_{e,strong} \mathfrak{M}$, then I is the fixed point set of some $j \in Aut(\mathfrak{M})$.

• **Theorem** (Kossak-Schmerl 1995, Kossak-1997). In the above, j can be arranged to be expansive on the complement of the convex hull of its fixed point set. Strong Cuts and Arithmetic Saturation

- *I* is a *strong cut* of \mathfrak{M} if, for each function f whose graph is coded in \mathfrak{M} and whose domain includes *I*, there is some s in *M* such that for all $m \in M$, $f(m) \notin I$ iff s < f(m).
- **Theorem** (Kirby-Paris, 1977) The following are equivalent for a cut I of $\mathfrak{M} \models PA$:
- (a) I is strong in \mathfrak{M} .
- (b) $(\mathbf{I}, SSy(\mathfrak{M}, I)) \vDash ACA_0$.
 - Proposition. A countable recursively saturated model of PA is arithmetically saturated iff N is a strong cut of M.

Schmerl's Conjecture

 Conjecture (Schmerl). If N is a strong cut of countable recursively saturated model M of PA, then the isomorphism types of fixed point sets of automorphisms of M coincide with the isomorphism types of elementary substructures of M. Kossak's Evidence

• Theorem (Kossak, 1997).

(1) The number of isomorphism types of fixed point sets of \mathfrak{M} is either 2^{\aleph_0} or 1, depending on whether \mathbb{N} is a strong cut of \mathfrak{M} , or not.

(2) Every countable model of PA is isomorphic to a fixed point set of some automorphism of some countable arithmetically saturated model of PA. A New Ultrapower (1)

• Suppose $\mathfrak{M} \preceq \mathfrak{N}$, where $\mathfrak{M} \models PA^*$, *I* is a cut of both \mathfrak{M} and \mathfrak{N} , and *I* is strong in \mathfrak{N} (N.B., *I* need not be strong in \mathfrak{M}).

•
$$\mathcal{F} := \left({^{I}M} \right)^{\mathfrak{N}}.$$

- Both Skolem-Gaifman, and Kirby-Paris ultrapowers can be viewed as special cases of the above.
- **Proposition.** There is an \mathcal{F} -Ramsey ultrafilter \mathcal{U} on $B(\mathcal{F})$ if M is countable.
- Theorem. One can use \mathcal{F} , and an \mathcal{F} -Ramsey ultrafilter \mathcal{U} to build $\mathfrak{M}^*_{\mathbb{L}}$, and a group embedding $j \mapsto \hat{j}$ of $Aut(\mathbb{L})$ into $Aut(\mathfrak{M}^*_{\mathbb{L}})$.

A New Ultrapower (2)

• Theorem.

(a) $\mathfrak{M} \prec \mathfrak{M}^*_{\mathbb{L}}$.

(b) I is an initial segment of \mathfrak{M}^* , and $B(\mathcal{F}) = SSy(\mathfrak{M}^*_{\mathbb{L}}, I)$.

(c) For every \mathcal{L} -formula $\varphi(x_1, \dots, x_n)$, and every $(l_1, \dots, l_n) \in [\mathbb{L}]^n$, the following two conditions are equivalent:

(i) $\mathfrak{M}^*_{\mathbb{L}} \models \varphi(l_1, l_2, \cdots, l_n);$

(ii) $\exists H \in \mathcal{U}$ such that for all $(a_1, \dots, a_n) \in [H]^n$, $\mathfrak{M} \models \varphi(a_1, \dots, a_n)$.

(d) If $j \in Aut(\mathbb{L})$ is fixed point free, then $fix(\hat{j}) = M$.

(e) If $j \in Aut(\mathbb{L})$ is expansive on \mathbb{L} , then \hat{j} is expansive on $M^* \setminus \overline{M}$.

Proof of Schmerl's Conjecture (1)

Theorem. Suppose M₀ is an elementary submodel of a countable arithmetically saturated model M of PA. There is M₁ ≺ M with M₀ ≅ M₁ and an embedding j ↦ ĵ of Aut(Q) into Aut(M), such that fix(ĵ) = M₁ for every fixed point free j ∈Aut(Q).

Proof:

(1) Let
$$\mathcal{F} := (^{\mathbb{N}}M_0)^{\mathfrak{M}}$$

(2) Build an ultrafilter \mathcal{U} on $B(\mathcal{F})$ that is \mathcal{F} -Ramsey.

(3)
$$\mathfrak{M}^* := \prod_{\mathcal{F},\mathcal{U},\mathbb{Q}} \mathfrak{M}_0.$$

Proof of Schmerl's Conjecture (2)

(4) \mathfrak{M}^* is recursively saturated (key idea: \mathfrak{M}^* has a satisfaction class).

(5) Therefore $\mathfrak{M}^* \cong \mathfrak{M}$.

(6) Let θ be an isomorphism between \mathfrak{M}^* and \mathfrak{M} and let \mathfrak{M}_1 be the image of \mathfrak{M}_0 under θ .

(7) The embedding $j \stackrel{\lambda}{\longmapsto} \hat{j}$ of $Aut(\mathbb{Q})$ into $Aut(\mathfrak{M}^*)$ has the property that $fix(\hat{j}) = M_0$ for every fixed point free $j \in Aut(\mathbb{Q})$.

Proof of Schmerl's Conjecture (3)

(8) The desired embedding $j \xrightarrow{\alpha} \tilde{j}$ by:

$$\alpha = \theta^{-1} \circ \lambda \circ \theta.$$

This is illustrated by the following commutative diagram:

$$\mathfrak{M} \stackrel{\widetilde{j}=\alpha(j)}{\longrightarrow} \mathfrak{M} \\
\downarrow \theta & \uparrow \theta^{-1} \\
\mathfrak{M}^* \stackrel{\widehat{j}=\lambda(j)}{\longrightarrow} \mathfrak{M}^*$$

- A. Enayat, From bounded to second order arithmetic via automorphisms, in Logic in Tehran, Lecture Notes in Logic, vol. 26, 2006, pp. 87-113.
- ____, Automorphisms of models of bounded arithmetic, Fundamenta Mathematicae, vol. 192 (2006), pp. 37-65.
- Automorphisms of models of arithmetic: a unified view, Annals of Pure and Applied Logic, vol. 145, (2007), pp. 16-36.
- 4. R. Kaye, **Models of Peano Arithmetic**, Oxford University Press, 1991.
- R. Kossak and J. Schmerl, The Structure of Models of Peano Arithmetic, Oxford University Press, 2006.