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Prehistory

• (N, <) is rigid. Indeed any well-founded ex-

tensional relational structure is rigid.

• Question (Hasenjäger): Is there a model

of PA with a nontrivial automorphism?

• Equivalent Question: Is there a model

of ZF \ {Infinity}∪{¬Inf} with a nontrivial

automorphism?



The Answer

• Theorem (Ehrenfeucht and Mostowski).

Given an infinite model M and a linear or-

der L, there is an elementary extension M∗
L

of M such that

Aut(L) ↪→ Aut(M∗
L).



The Standard Proof of EM

abrakadabra (Ramsey’s Theorem)

ajji majji latarrajji (Compactness Theorem)



EM with one ABRAKADABRA

• M = (M, · · ·) is a infinite structure, and L
is a linear order.

• Fix a nonprincipal ultrafilter U over P(N).

• One can build the L-iterated ultrapower of

M modulo U, denoted M∗
U ,L, with ‘bare

hands’.

• Theorem. There is a group embedding

j 7→ ̂ of Aut(L) into Aut(M∗
U ,L) such that

for every fixed point free j,

fix(̂) = M.



Skolem Ultrapowers (1)

• Suppose M has definable Skolem functions

(e.g., M is a RCF, or a model of PA, or a

model of ZF + V=OD).

• The Skolem ultrapower M∗U can be con-

structed as follows:

(a) Let B be the Boolean algebra of M-

definable subsets of M , and U be an ultra-

filter over B.

(b) Let F be the family of functions from

M into M that are parametrically definable

in M.



Skolem Ultrapowers (2)

• (c) The universe of M∗
U is

{[f ] : f ∈ F},

where

f ∼ g ⇐⇒ {m ∈ M : f(m) = g(m)} ∈ U

(d) Define functions, relations, and constants

on M∗U as in the usual theory of ultraproducts.

• The analogue of the ÃLoś theorem is true

in this context as well, therefore

M ≺ M∗
U .



Skolem Ultrapowers (3)

• Theorem (MacDowell-Specker, 1961)

Every model of PA has an elementary end

extension.

• Idea of the Proof : Construct U with

the property that every definable map with

bounded range is constant on a member of

U. Then,

M ≺e M∗
U .

• The construction of U above is a more re-

fined version of the proof of the existence

of ‘p-points’ in βω using CH.



Skolem-Gaifman Ultrapowers (1)

• For each parametrically definable X ⊆ M,

and m ∈ M, (X)m = {x ∈ M : 〈m, x〉 ∈ X}.

• U is an iterable ultrafilter if for every X ∈ B,

{m ∈ M : (X)m ∈ U} ∈ B.

• Theorem (Gaifman, 1976)

(1) Every countable model of PA carries

an iterable U.

(2) If U is iterable, then the L-iterated ul-

trapower of M modulo U can be meaning-

fully defined.



Skolem-Gaifman Ultrapowers (2)

• Let M∗
U ,L be the L-iterated ultrapower of

M modulo U.

• Theorem (Gaifman, 1976)

(1) If U is iterable, and L is a linear order,
then

M ≺e M∗
U ,L.

(2) Moreover, if U is a ‘Ramsey ultrafilter’
over M, then there is an isomorphism

j 7−→ ̂

between Aut(L) and Aut(M∗
L;M) such that

fix( ̂) = M

for every fixed-point-free j.



Two Corollaries of Gaifman’s Theorem

• Corollary 1. There are rigid models of PA

of arbitrarily large cardinalty.

• Corollary 2. For every L, there is some

model M of PA such that Aut(M) ∼= Aut(L).



Schmerl’s Generalization

• Theorem (Schmerl, 2002) The following

are equivalent for a group G.

(a) G ≤ Aut(L) for some linear order L.

(b) G is left-orderable.

(c) G ∼= Aut(A) for some linearly ordered

structure A = (A, <, · · ·).

(d) G ∼= Aut(M) for some M ² PA.

(e) G ∼= Aut(F) for some ordered field F.

• Schmerl’s methodology: using a partition

theorem of Neštěril-Rödl/Abramson-Harrington

to refine Gaifman’s technique.



Countable Recursively Saturated Models (1)

• Theorem (Schlipf, 1978). Every count-

able recursively saturated model has con-

tinuum many automorphisms.

• Theorem (Schmerl, 1985)

(1) If a countable recursively saturated model

M is equipped with a ‘β-function” β, then

for any countable linear order L without a

last element, M is generated by a set of

indiscernibles of order-type L (via β).

(2) Consequently, there is a group embed-

ding from Aut(Q) into Aut(M).



Countable Recursively Saturated Models (2)

• Theorem. (Smoryński, 1982) If M is a

countable recursively saturated model of

PA and I is a cut of M that is closed under

exponentiation, then there are continuum

many j ∈ Aut(M) such that I is the longest

initial segment of M that is pointwise fixed

by j

• Question. Can Smoryński’s theorem be

combined with part (2) of Schmerl’s theo-

rem above?



Paris-Mills Ultrapowers

• The index set is of the form

c = {0,1, · · ·, c− 1}

for some nonstandard c in M.

• The family of functions used, denoted F,
is (cM)M.

• The Boolean algebra at work will be de-
noted PM(c).

• This type of ultrapower was first consid-
ered by Paris and Mills (1978) to show that
one can arrange a model of PA in which
there is an externally countable nonstan-
dard integer H such that the external cardi-
nality of Superexp(2, H) is of any prescribed
infinite cardinality.



More on Ultrafilters

• U is I-complete if for every f ∈ F, and

every i ∈ I, if f : c → i, then f is constant

on a member of U.

• U is I-tight if for every f ∈ F, and every

n ∈ N+, if f : [c]n → M, then there is some

H ∈ U such either f is constant on H, or

there is some m0 ∈ M\I such that f(x) >

m0 for all x ∈ [H]n.

• U is I-conservative if for every n ∈ N+ and

every M-coded sequence 〈Ki : i < c〉 of sub-

sets of [c]n there is some X ∈ U and some

d ∈ M with I < d ≤ c such that ∀i < d

X decides Ki, i.e., either [X]n ⊆ Ki or

[X]n ⊆ [c]n\Ki.



Desirable Ultrafilters

• Theorem. PM(c) carries a nonprincipal

ultrafilter U satisfying the following four

properties :

(a) U is I-complete;

(b) U is I-tight;

(c) {CardM(X) : X ∈ U} is downward cofinal

in M\I;

(d) U is I-conservative.



Fundamental Theorem

• Theorem. Suppose I is a cut closed ex-

ponentiation in a countable model of PA,

L is a linearly ordered set, and U satisfies

the four properties of the previous theo-

rem. One can use U to build an elementary

M∗
L of M that satisfies the following:

(a) I ⊆e M∗
L and SSy(M∗

L, I) = SSy(M, I).

(b) L is a set of indiscernibles in M∗
L;

(c) Every j ∈ Aut(L) induces an automorphism

ĵ ∈ Aut(M∗
L) such that j 7→ ĵ is a group em-

bedding of Aut(L) into Aut(M∗
L);

(d) If j ∈ Aut(L) is nontrivial, then Ifix(ĵ) = I.



Combining Smoryński and Schmerl

• Theorem. Suppose M is a countable re-
cursively saturated model of PA and I is a
cut of M that is closed under exponentia-
tion. There is a group embedding j 7−→ ̂
from Aut(Q) into Aut(M) such that for ev-
ery nontrivial j ∈ Aut(Q) the longest initial
segment of M that is pointwise fixed by ̂
is I.

• Proof: Use part (c) of the previous theo-
rem, plus the following isomorphism theo-
rem.

• Theorem. Suppose I is a cut closed under
exponentiation in a countable recursively
saturated model M of PA, and M∗ is a
cofinal countable elementary extension of
M such that I ⊆e M∗ with SSy(M, I) =
SSy(M∗, I). Then M and M∗ are isomor-
phic over I.



Key Results of Kaye, Kossak, Kotlarski, and

Schmerl

• Theorem (K3, 1991). Suppose M is a

countable recursively saturated model of

PA.

(1) If N is a strong cut of M, then there is

some j ∈ Aut(M) such that every undefinable

element of M is moved by j.

(2) If I ≺e,strong M, then I is the fixed point

set of some j ∈ Aut(M).

• Theorem (Kossak-Schmerl 1995, Kossak-

1997). In the above, j can be arranged

to be expansive on the complement of the

convex hull of its fixed point set.



Strong Cuts and Arithmetic Saturation

• I is a strong cut of M if, for each function

f whose graph is coded in M and whose

domain includes I, there is some s in M

such that for all m ∈ M, f(m) /∈ I iff s <

f(m).

• Theorem (Kirby-Paris, 1977) The follow-

ing are equivalent for a cut I of M ² PA :

(a) I is strong in M.

(b) (I, SSy(M, I)) ² ACA0.

• Proposition. A countable recursively sat-

urated model of PA is arithmetically satu-

rated iff N is a strong cut of M.



Schmerl’s Conjecture

• Conjecture (Schmerl). If N is a strong cut

of countable recursively saturated model M

of PA, then the isomorphism types of fixed

point sets of automorphisms of M coincide

with the isomorphism types of elementary

substructures of M.



Kossak’s Evidence

• Theorem (Kossak, 1997).

(1) The number of isomorphism types of fixed

point sets of M is either 2ℵ0 or 1, depending

on whether N is a strong cut of M, or not.

(2) Every countable model of PA is isomorphic

to a fixed point set of some automorphism of

some countable arithmetically saturated model

of PA.



A New Ultrapower (1)

• Suppose M ¹ N, where M ² PA∗, I is a
cut of both M and N, and I is strong in N

(N.B., I need not be strong in M).

• F :=
(
IM

)N
.

• Both Skolem-Gaifman, and Kirby-Paris ul-
trapowers can be viewed as special cases
of the above.

• Proposition. There is an F-Ramsey ultra-
filter U on B(F) if M is countable.

• Theorem. One can use F, and an F-
Ramsey ultrafilter U to build M∗

L, and a
group embedding j 7→ ̂ of Aut(L) into
Aut(M∗

L).



A New Ultrapower (2)

• Theorem.

(a) M ≺ M∗
L.

(b) I is an initial segment of M∗, and B(F) =
SSy(M∗

L, I).

(c) For every L-formula ϕ(x1, ···, xn), and every
(l1, · · ·, ln) ∈ [L]n, the following two conditions
are equivalent:

(i) M∗
L ² ϕ(l1, l2, · · ·, ln);

(ii) ∃H ∈ U such that for all (a1, · · ·, an) ∈ [H]n,
M ² ϕ(a1, · · ·, an).

(d) If j ∈ Aut(L) is fixed point free, then
fix(̂) = M.

(e) If j ∈ Aut(L) is expansive on L, then ̂ is
expansive on M∗\M.



Proof of Schmerl’s Conjecture (1)

• Theorem. Suppose M0 is an elementary

submodel of a countable arithmetically sat-

urated model M of PA. There is M1 ≺ M

with M0
∼= M1 and an embedding j 7→ ̂ of

Aut(Q) into Aut(M), such that fix(̂) = M1

for every fixed point free j ∈Aut(Q).

Proof:

(1) Let F := (NM0)
M.

(2) Build an ultrafilter U on B(F) that is F-

Ramsey.

(3) M∗ :=
∏

F ,U ,Q
M0.



Proof of Schmerl’s Conjecture (2)

(4) M∗ is recursively saturated (key idea: M∗
has a satisfaction class).

(5) Therefore M∗ ∼= M.

(6) Let θ be an isomorphism between M∗ and

M and let M1 be the image of M0 under θ.

(7) The embedding j
λ7−→ ĵ of Aut(Q) into

Aut(M∗) has the property that fix(̂) = M0 for

every fixed point free j ∈ Aut(Q).



Proof of Schmerl’s Conjecture (3)

(8) The desired embedding j
α7−→ j̃ by:

α = θ−1 ◦ λ ◦ θ.

This is illustrated by the following commuta-

tive diagram:

M
j̃=α(j)−→ M

↓θ ↑θ−1

M∗ ĵ=λ(j)−→ M∗
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