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Prehistory

e (N, <) isrigid. Indeed any well-founded ex-
tensional relational structure is rigid.

e Question (Hasenjager): Is there a model
of PA with a nontrivial automorphism??

e Equivalent Question: Is there a model

of ZF \ {Infinity}u{-Inf} with a nontrivial
automorphism?



T he Answer

e Theorem (Ehrenfeucht and Mostowski).
Given an infinite model 9% and a linear or-

der L, there is an elementary extension imi
of 9N such that

Aut(L) — Aut(9NF).



The Standard Proof of EM

abrakadabra (Ramsey’'s Theorem)

ajjii majji latarrajji (Compactness Theorem)



EM with one ABRAKADABRA

M = (M, ---) is a infinite structure, and L
IS a linear order.

Fix a nonprincipal ultrafilter &/ over P(N).

One can build the L-iterated ultrapower of
9 modulo U, denoted DUI;”L, with ‘bare
hands'.

Theorem. There is a group embedding
j 7 of Aut(L) into Aut(9My, ;) such that
for every fixed point free j,

fix(3) = M.



Skolem Ultrapowers (1)

e Suppose I has definable Skolem functions
(e.g., M is a RCF, or a model of PA, or a
model of ZF + V=0D).

e [ he Skolem ultrapower zmz, can be con-
structed as follows:

(a) Let B be the Boolean algebra of M-
definable subsets of M, and U be an ultra-
filter over B.

(b) Let F be the family of functions from
M into M that are parametrically definable
in 9.



Skolem Ultrapowers (2)

e (c) The universe of M, is

{lfl1:feFy},

where

fr~g<={meM: f(m)=g(m)}elU

(d) Define functions, relations, and constants
on Sﬁz‘{ as in the usual theory of ultraproducts.

e [ he analogue of the t.0S theorem is true
in this context as well, therefore

M < N,



Skolem Ultrapowers (3)

e Theorem (MacDowell-Specker, 1961)

Every model of PA has an elementary end
extension.

e Idea of the Proof : Construct U with
the property that every definable map with
bounded range is constant on a member of
U. Then,

M <e M.

e [ he construction of U4 above is a more re-
fined version of the proof of the existence
of ‘p-points’ in Bw using CH.



Skolem-Gaifman Ultrapowers (1)

e For each parametrically definable X C M,
and me M, (X)m={zeM: (m,z) € X}.

e U{ iS an iterable ultrafilter if for every X € B,
{meM:(X)mel} eB.

e Theorem (Gaifman, 1976)

(1) Every countable model of PA carries
an iterable U.

(2) If U is iterable, then the L-iterated ul-
trapower of 91 modulo U can be meaning-
fully defined.



Skolem-Gaifman Ultrapowers (2)

o Let Em;’:[L be the L-iterated ultrapower of
M modulo U.

e Theorem (Gaifman, 1976)

(1) If U is iterable, and L is a linear order,
then

M <e M-

(2) Moreover, if U is a ‘Ramsey ultrafilter’
over I, then there is an isomorphism

—~

J—17

between Aut(LL) and Aut(IM; ; M ) such that

fix(7) =M

for every fixed-point-free j.



Two Corollaries of Gaifman’s T heorem

e Corollary 1. There are rigid models of PA
of arbitrarily large cardinalty.

e Corollary 2. For every L, there is some
model M of PA such that Aut(9) = Aut(LL).



Schmerl’'s Generalization

e Theorem (Schmerl, 2002) The following
are equivalent for a group G.

(a) G < Aut(LL) for some linear order L.
(b) G is left-orderable.

(c) G = Aut(Q) for some linearly ordered
structure A = (A, <, - ).

(d) G = Aut(9M) for some ME PA.

(e) G = Aut(F) for some ordered field F.

e Schmerl’'s methodology: using a partition
theorem of Nesteril-Rodl/Abramson-Harrington
to refine Gaifman’s technique.



Countable Recursively Saturated Models (1)

e Theorem (Schlipf, 1978). Every count-
able recursively saturated model has con-
tinuum many automorphisms.

e Theorem (Schmerl, 1985)

(1) If a countable recursively saturated model
M is equipped with a ‘B-function” 3, then
for any countable linear order . without a
last element, 9N is generated by a set of
indiscernibles of order-type 1L (via j3).

(2) Consequently, there is a group embed-
ding from Aut(Q) into Aut(9MN).



Countable Recursively Saturated Models (2)

e Theorem. (Smorynski, 1982) If 9M is a
countable recursively saturated model of
PA and I is a cut of 9 that is closed under
exponentiation, then there are continuum
many j € Aut(M) such that I is the longest
initial segment of 9N that is pointwise fixed

by j

e Question. Can Smorynski's theorem be
combined with part (2) of Schmerl’'s theo-
rem above?



Paris-Mills Ultrapowers

e [ he index set is of the form
c={0,1,.---,c—1}

for some nonstandard c in 9.

° Thg family of functions used, denoted F,
is (MM

e [ he Boolean algebra at work will be de-
noted PM(%).

e [ his type of ultrapower was first consid-
ered by Paris and Mills (1978) to show that
one can arrange a model of PA in which
there is an externally countable nonstan-
dard integer H such that the external cardi-
nality of Superexp(2, H) is of any prescribed
infinite cardinality.



More on Ultrafilters

e U is I-complete if for every f € F, and
every 1 € I, if f:¢ — 14, then f is constant
on a member of U.

e U{ is I-tight if for every f € F, and every
n € NT, if f:[e|® — M, then there is some
H € U such either f is constant on H, or
there is some mg € M\I such that f(x) >
mgo for all x € [H]™.

e U/ is I-conservative if for every n ¢ NT and
every I-coded sequence (K; : i < ¢y of sub-
sets of [¢]"™ there is some X € U and some
d e M with I < d < ¢ such that Vi < d
X decides K;, i.e., either [X]|"™ C K, or
[X]™ C [e]™\K;.



Desirable Ultrafilters

e Theorem. 7PY(¢) carries a nonprincipal
ultrafilter U satisfying the following four
properties :

(a) U is I-complete;
(b) U is I-tight;

(c) {Card™(X) : X € U} is downward cofinal
in M\I,

(d) U is I-conservative.



Fundamental T heorem

e Theorem. Suppose I is a cut closed ex-
ponentiation in a countable model of PA,
L is a linearly ordered set, and U satisfies
the four properties of the previous theo-
rem. One can use U to build an elementary
My of M that satisfies the following:

(@) I Ce My and SSy(My , 1) = SSy(IM, I).

(b) L is a set of indiscernibles in 9y ;

(c) Every j € Aut(L) induces an automorphism
j € Aut(9M¥) such that j +— j is a group em-

bedding of Aut(L) into Aut(9My);

(d) If j € Aut(L) is nontrivial, then I, (5) = 1.



Combining Smorynski and Schmerl

e Theorem. Suppose 9 is a countable re-
cursively saturated model of PA and I is a
cut of 9N that is closed under exponentia-
tion. There is a group embedding j+—— 7
from Aut(Q) into Aut(M) such that for ev-
ery nontrivial j € Aut(Q) the longest initial
segment of 9N that is pointwise fixed by 7
is 1.

e Proof: Use part (c) of the previous theo-
rem, plus the following isomorphism theo-
rem.

e Theorem. Suppose I is a cut closed under
exponentiation in a countable recursively
saturated model 9 of PA, and ON* is a
cofinal countable elementary extension of
M such that I Ce IM* with SSy(IN, 1) =
SSy(ON*,I). Then IM and IM* are isomor-
phic over 1.



Key Results of Kaye, Kossak, Kotlarski, and
Schmerl

e Theorem (K3, 1991). Suppose M is a
countable recursively saturated model of
PA.

(1) If N is a strong cut of 9, then there is
some j € Aut(9M) such that every undefinable
element of 9 is moved by j.

(2) If I <¢ strong M, then I is the fixed point
set of some j € Aut(IMN).

e Theorem (Kossak-Schmerl 1995, Kossak-
1997). In the above, j can be arranged
to be expansive on the complement of the
convex hull of its fixed point set.



Strong Cuts and Arithmetic Saturation

e [ is a strong cut of M if, for each function
f whose graph is coded in 911 and whose
domain includes I, there is some s in M
such that for all m € M, f(m) & I iff s <

f(m).

e Theorem (Kirby-Paris, 1977) The follow-
ing are equivalent for a cut I of M F PA :

(a) I is strong in M.

(b) (L, SSy(M, 1)) E ACAq.

e Proposition. A countable recursively sat-
urated model of PA is arithmetically satu-
rated iff N js a strong cut of IN.



Schmerl's Conjecture

e Conjecture (Schmerl). If N is a strong cut
of countable recursively saturated model IN
of PA, then the isomorphism types of fixed
point sets of automorphisms of 9N coincide
with the isomorphism types of elementary
substructures of IN.



Kossak’'s Evidence

e Theorem (Kossak, 1997).

(1) The number of isomorphism types of fixed
point sets of M is either 280 or 1, depending
on whether N is a strong cut of 9, or not.

(2) Every countable model of PA is isomorphic
to a fixed point set of some automorphism of
some countable arithmetically saturated model
of PA.



A New Ultrapower (1)

Suppose M < N, where M F PA*, I is a
cut of both 9t and N, and I is strong in N
(N.B., I need not be strong in ).

F = <IM>m.

Both Skolem-Gaifman, and Kirby-Paris ul-
trapowers can be viewed as special cases
of the above.

Proposition. There is an F-Ramsey ultra-
filter U on B(F) if M is countable.

Theorem. One can use F, and an F-
Ramsey ultrafilter U to build 9T, and a
group embedding j — 7 of Aut(lL) into
Aut (I ).



A New Ultrapower (2)
e [ heorem.

(a) M < My .

(b) I is an initial segment of IM*, and B(F) =
SSy(INnz, I).

(c) For every L-formula o(xq1,---,xn), and every
(11, -+, 1ln) € [L]™, the following two conditions
are equivalent:

(I) mi = @(l17l27 e 7ln)1

(ii) 3H € U such that for all (a1, -, an) € [H]",
ME (a1, -, an).

(d) If 7 € Aut(LL) is fixed point free, then
fix(7) = M.

(e) If j € Aut(LL) is expansive on L, then 7 is
expansive on M*\ M.



Proof of Schmerl’'s Conjecture (1)

e Theorem. Suppose Mg is an elementary
submodel of a countable arithmetically sat-
urated model M of PA. There is N1 <M
with Mo = M, and an embedding j +— 7 of
Aut(Q) into Aut(9M), such that fix(7) = My
for every fixed point free j € Aut(Q).

Proof:
(1) Let F := (Nng)™.

(2) Build an ultrafilter 4 on B(F) that is F-
Ramsey.

(3) m* = 1 mo.
Fu,Q



Proof of Schmerl's Conjecture (2)

(4) 9™ is recursively saturated (key idea: IN*
has a satisfaction class).

(5) Therefore M* = IN.

(6) Let 6 be an isomorphism between 2* and
M and let My be the image of My under 6.

(7) The embedding j LN 7 of Aut(Q) into
Aut(M*) has the property that fix(7) = Mg for
every fixed point free j € Aut(Q).



Proof of Schmerl's Conjecture (3)

(8) The desired embedding j — ; by:

a=601oNo6.

This is illustrated by the following commuta-
tive diagram:

m I=eD oy
16 161
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