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PA is finite set theory!

There is an arithmetical formula E(x,vy)
that expresses ‘“the z-th digit of the base
2 expansion of y is 1"”.

Theorem (Ackermann, 1908)

(N, E) = (V,,€).

M = PA iff (M, FE) is a model of ZF~°°.



Three Questions

Question 1. Is every Scott set the stan-
dard system of some model of PA~?

Question 2. Does every expansion of N
have a conservative elementary extension?

Question 3. Does every nonstandard model
of PA have a minimal cofinal elementary
extension?

Source: R. Kossak and J. Schmerl, The
Structure of Models of Peano Arith-
metic, Oxford University Press, 2006.



Scott Sets and Standard Systems (1)

e Suppose A C P(w). A is a Scott set iff
(N, A) = WKLg, equivalently:

e A is a Scott set iff;
(1) A is a Boolean algebra;
(2) A is closed under Turing reducibility;

(3) If an infinite subset T of 2<% is coded
in A, then an infinite branch of 7 is coded

in A.

e Suppose I = PA.
SSy(M) .= {cpNw:c€ M}, where

cg:={r e M : M= xEc}.



Scott Sets and Standard Systems (2)

e Theorem (Scott 1961).
(a) SSy(IM) is a Scott set.

(b) All countable Scott sets can be realized
as SSy(M), for some M = PA.

e Theorem (Knight-Nadel, 1982). All Scott
sets of cardinality at most X1 can be real-
ized as SSy(9M), for some M = PA.

e Corollary. CH settles Question 1.



McDowell-Specker-Gaifman

o M <cons N, if for every parametrically de-
finable subset X of N, X N M is also para-
metrically definable.

e For models of PA, MM <cons N = M <,,q N

e Theorem (Gaifman, 1976). For countable
L, every model 9 of PA(L) has a conser-
vative elementary extension.



Proof of MSG

The desired model is a Skolem ultrapower
of 9 modulo an appropriately chosen ul-
trafilter.

U is complete if every definable map with
bounded range is constant on a member of
U.

For each definable X C M, and m € M,
(X)m={zeM:(mzx) e X}.

U is an iterable ultrafilter if for every de-
finable X € B, {m € M : (X)m € U} is
definable.

There is a complete iterable ultrafilter U
over the definable subsets of M.



Mills’ Counterexample

e In 1978 Mills used a novel forcing construc-
tion to construct a countable model 9t of
PA(L) which has no elementary end exten-
sion.

e Starting with any countable nonstandard
model 91 of PA and an infinite element a €
M, Mills’ forcing produces an uncountable
family F of functions from M into {m €
M :m < a} such that

(1) the expansion (IM, f) rcr satisfies PA in
the extended language employing a name
for each f € F, and

(2) for any distinct f and g in F, there is
some b € M such that f(z) # g(x) for all
x > b.



On Question 2

o For A C P(w),

Q.A = (w7 _|_> '7X)XE.A'

e Question 2 (Blass/Mills) Does 2 4 have a
conservative elementary extension for ev-
ery ACP(w)?

e Reformulation: Does €2 4 carry an iterable
ultrafilter for every A C P(w)?



Negative Answer to Question 2

e Theorem A (E, 2006) There is A C P(w)
of power N1 such that S2 4 does not carry
an iterable ultrafilter.

e Let P, denote the quotient Boolean alge-
bra A/FIN, where FIN is the ideal of finite
subsets of w.

e Theorem B (E, 2006) There is an arith-
metically closed A C P(w) of power ¥4
such that forcing with P4 collapses Nj.



Proof of Theorem A

e Start with a countable w-model (N, Ag) of
second order arithmetic (Z5) plus the choice
scheme (AC) such that no nonprincipal ul-
trafilter on A is definable in (N, Agp).

e Use ¢y, to elementary extend (N, Ag) to
(N, A) such that the only “piecewise coded”
subsets S of A are those that are definable
in (N, A4).

Here S C P(w) is piecewise coded in A if for
every X € A there is some Y € A such that

nhew: (X)npe8St =Y,

where (X), is the n-th real coded by the real
X.



Proof of Theorem A, Cont'd

e [ he proof uses an omitting types argu-
ment, and takes advantage of a canonical
correspondence between models of Z> 4
AC, and models of ZFC~ + “all sets are
finite or countable” . This yields a proof
of Theorem A within ZFC + <>N1.

e An absoluteness theorem of Shelah can be
employed to establish Theorem A within
ZFC alone.



Shelah’'s Completeness Theorem

Theorem (Shelah, 1978). Suppose L is a
countable language, and t is a sequence of L-
formulae that defines a ranked tree in some
L-model. Given any sentence ¢ of Ly, .(Q),
where () is the quantifier “there exists un-
countably many’”, there is a countable expan-
sion L of L, and a sentence ¢ € Ly, ,(Q) such
that the following two conditions are equiva-
lent:

(1) ¢ has a model.

(2) v has a model 2 of power X1 which has the
property that t2 js a ranked tree of cofinality
Ny and every branch of t% is definable in .

Consequently, by Keisler’'s completeness theo-
rem for L, ,(Q), (2) is an absolute statement.



Motivation for Theorem B

e Theorem (Gitman, 2006). (Within ZFC+
PFA)

Suppose A C P(w) is arithmetically closed
and P4 is proper. Then A is the standard
system of some model of PA.

e Question (Gitman-Hamkins).

Is there an arithmetically closed A such
that P 4 is not proper?

e [ heorem B shows that the answer to the
above is positive.



Open Questions (1)

Question 1. Is there A C P(w) such that some
model of Th(S24) has no elementary end ex-
tension?

Question II. Suppose A C P(w) and A is
Borel.

(a) Does Q24 have a conservative elementary
extension?

(b) Suppose, furthermore, that A is arithmeti-
cally closed. Is P4 a proper poset?



Open Questions (2)

Suppose U is an ultrafilter on A C P(w) with
new, n>1.

o U is (A,n)-Ramsey, if for every [ : [w]" —
{0,1} whose graph is coded in A, there is
some X € U such that f | [X]" is constant.

e U is A-Ramsey if U is (A,n)-Ramsey for
all nonzero n € w.

e U4 is A-minimal iff for every f : w — w whose
graph is coded in A, there is some X €
U such that f | X is either constant or
injective.



Open Questions (3)

Theorem . Suppose U is an ultrafilter on an
arithmetically closed A C P(w).

(a) If U is (A,2)-Ramsey, then U is piecewise
coded in A.

(b) If U is both piecewise coded in A and A-
minimal, then U is A-Ramsey.

(c) If U is (A,2)-Ramsey, then U is A-Ramsey.

(d) For A = P(w), the existence of an A-
minimal ultrafilter is both consistent and in-
dependent of ZFC.

Question III. Can it be proved in ZFC that
there exists an arithmetically closed A C P(w)
such that A carries no A-minimal ultrafilter?



