AN INEVITABLE EXTENSION OF ZFC

Ali Enayat

Kunen Fest, April 3, 2009
Mahlo Cardinals

• A Mahlo cardinal κ is a strongly inaccessible cardinal such that the regular cardinals below κ form a stationary subset of κ.

• For an ordinal α, the α-Mahlo cardinals are defined recursively as follows:

 κ is 0-Mahlo if κ is strongly inaccessible;

 For $\alpha = \delta + 1$, κ is a α-Mahlo if

 $\{\gamma < \kappa : \gamma$ is δ-Mahlo\} is stationary in κ;

 For limit α, κ is α-Mahlo if κ is δ-Mahlo for all $\delta < \alpha$.
Levy and Reflection

• Levy showed that Σ_n-truth is Σ_n-definable for $n \geq 1$ within ZF.

• In particular, for each natural number n there is a unary formula with the free variable α, denoted “$V_\alpha \prec_n V$”, that expresses:

 for all Σ_n-formulae $\varphi(v_1, \ldots, v_k)$, and all a_1, \ldots, a_k in V_α,

 \[\varphi(a_1, \ldots, a_k) \leftrightarrow \varphi^{V_\alpha}(a_1, \ldots, a_k). \]

• For a unary formula $C(\alpha)$, possibly with suppressed parameters,

 “$\{\alpha : C(\alpha)\}$ is c.u.b.”

stands for the formula expressing

 “$\{\alpha \in \text{Ord} : C(\alpha)\}$ is c.u.b in Ord”.
• **Reflection Theorem** (Montague 1957; Levy 1960) *For each natural number* n, ZF proves that $\{\alpha : V_\alpha \prec_n V\}$ *is c.u.b.*

• **Theorem** (Levy 1960). *For each natural numbers* n, *the following statement is provable within* ZF:

$$(\kappa \text{ is (} n+1 \text{-Mahlo}) \rightarrow \exists \alpha < \kappa (\alpha \text{ is } n\text{-Mahlo and } V_\alpha \prec V_\kappa)).$$
The Levy Scheme \(\Lambda \)

- \(\lambda_{m,n}(\kappa) \) is the sentence in set theory asserting that \(\kappa \) is an \(m \)-Mahlo cardinal and \(V_\kappa \prec_n V \).

- \(\Lambda := \{ \exists \kappa \ (\lambda_{n,n}(\kappa) : n \in \omega) \} \).

- \(\Lambda_1 := \{ \forall \alpha \in \text{Ord} \ \exists \kappa > \alpha \ \lambda_{n,n}(\kappa) : n \in \omega \} \).

- \(\Lambda_2 := \{ \forall \alpha \in \text{Ord} \ \exists \kappa > \alpha \ \lambda_{m,n}(\kappa) : m \in \omega, \ n \in \omega \} \).

- \(\Lambda_3 := \{ \psi_{C(\alpha,x),n} : C = C(\alpha, x) \) is a binary formula of set theory\}, where

\[
\psi_{C,n} := \forall x [\{ \alpha \in \text{Ord} : C(\alpha, x) \} \text{ is c.u.b.} \rightarrow \exists \kappa \ C(\kappa, x) \text{ and } \kappa \text{ is } n\text{-Mahlo}] .
\]
Different Faces of Λ

- **Theorem** (Levy 1960). Over ZF, the theories $\Lambda, \Lambda_1, \Lambda_2,$ and Λ_3 are pairwise equivalent.

- $\Lambda_0 := \{\exists \kappa \; \kappa \text{ is } n\text{-Mahlo}: n \in \omega\}$.

- **Proposition** (Folklore)

 (a) The theories $ZF + \Lambda_0$ and $ZF + \Lambda$ are equiconsistent.

 (b) Moreover, assuming $\text{Con}(ZF + \Lambda_0)$, neither Λ_0, nor Λ is finitely axiomatizable over ZF.
The robustness of Λ

- **Theorem** If $M \models \text{ZFC} + \Lambda$, and $c \in M$, then $(L(c))^M \models \Lambda$.

- **Theorem** If $M \models \text{ZFC} + \Lambda$ and $\mathbb{P} \in M$ is a partial order, then for every \mathbb{P}-generic filter G over M, $M[G] \models \Lambda$.

- **Corollary.** Suppose $\text{Con}(\text{ZF} + \Lambda)$. Then for any sentence ψ, $\text{Con}(\text{ZF} + \Lambda + \psi)$ if at least one of the following conditions are true:

 (a) $\text{ZF} \vdash \text{“} \psi \text{ holds in } L \text{”}$, or

 (b) $\text{ZF} \vdash \text{“} \text{ for some poset } \mathbb{P}, 1_\mathbb{P} \models \psi \text{”}$,
Finite Set Theory

• $\text{TC} := \text{"every set has a transitive closure".}$

• $\text{ZF}_{\text{fin}} = \text{ZF}\setminus\{\text{Infinity}\} + \neg\text{Infinity} + \text{TC}.$

• $\text{GBC}_{\text{fin}} = \text{GBC}\setminus\{\text{Infinity}\} + \neg\text{Infinity} + \text{TC}.$

• **Theorem** [Ackernann 1940, Kaye-Wong 2008]

 (a) ZF_{fin} is bi-interpretable with PA.

 (b) GBC_{fin} is bi-interpretable with $\text{ACA}_0.$
Inevitability of \land, Exhibit 1

- Let “Ord is WC” be the statement in class theory asserting that every “Ord-tree” has a branch of length Ord.

- **Theorem** [E 2004]

 (a) If $(M, A) \models \text{GBC} + \text{Ord is WC},$ then $M \models \text{ZFC} + \land$.

 (b) Every completion of $\text{ZFC} + \land$ has a countable model that has an expansion to a model of $\text{GBC} + \text{Ord is WC}$.

- **Corollary** $\text{GBC} + \text{Ord is WC}$ is a conservative extension of $\text{ZFC} + \land$.

- **Theorem** (Folklore) GBC_{fin} is a conservative extension of ZF_{fin}.
Inevitability of \(\land \), Exhibit 2

\begin{itemize}
 \item ZFC(I) is a theory in the language \(\{\in, I(x)\} \), where \(I(x) \) is a unary predicate.

 \item The axioms of ZFC(I) are as follows.

 (1) ZFC + All instances of replacement (hence separation) in \(\{\in, I(x)\} \);

 (2) \(I \) is a cofinal subclass of ordinals;

 (3) \(I \) is a class of indiscernibles for \((V, \in)\).
\end{itemize}
• **Theorem** (E 2005). The following are equivalent for a completion T of ZFC:

1. T has a model M that expands to a model $(M, I) \models \text{ZFC}(I)$.

2. T has a model M that expands to $(M, I_n)_{n < \omega}$ satisfying $\text{ZF}((\{I_n : n \in \omega\}) + "I_{n+1} is a set of indiscernibles for (V, I_k)_{k \leq n}"$.

3. T is an extension of $\text{ZFC} + \Lambda$.

• **Remark.** If Replacement (I) is weakened to Separation(I), the resulting system is conservative over ZFC.

• **Theorem** [E 2005] $\text{ZF}_{\text{fin}}(I)$ is a conservative extension of ZF_{fin}.
Inevitability of Λ, Exhibit 3

- **Theorem.** [E 2001] The Continuum Hypothesis is a sufficient, but not a necessary condition for every consistent extension of ZF to have an \aleph_2-like model.

- **Theorem** [Kaufmann, E 1984] Every completion of ZFC has a θ-like model for every $\theta \geq \aleph_1$.

- **Theorem.** [E 2001] $\text{Con}(ZF + \text{there is an } \omega\text{-Mahlo cardinal})$ implies consistency of “the only completions of ZFC that have an \aleph_2-like model are those containing Λ”.

- **Theorem** (McDowell-Specker 1961). Every completion of ZF_{fin} has a θ-like model for every $\theta \geq \aleph_1$.
Inevitability of \land, Exhibit 4

- The theory NFU was introduced by Jensen as a modification of Quine’s elegant formulation NF (New Foundations) of Russell’s theory of types.

- NF is a first order theory whose axioms consist of the *stratifiable* comprehension scheme and the usual extensionality axiom.

- The stratifiable comprehension scheme is the collection of sentences of the form “$\{x : \varphi(x)\}$ exists”, provided there is an integer valued function f whose domain is the set of all variables occurring in φ, which satisfies the following two requirements: (1) $f(v) + 1 = f(w)$, whenever $(v \in w)$ is a subformula of φ; (2) $f(v) = f(w)$, whenever $(v = w)$ is a subformula of φ.
Jensen’s variant NFU of NF is obtained by modifying the extensionality axiom so as to allow *urelements*.

Theorem (Jensen 1968)

(a) \(\text{Con(PA)} \Rightarrow \text{Con(NFU + \neg Infinity)} \).

(b) \(\text{Con(Z)} \Rightarrow \text{Con(NFU + Choice + Infinity)} \).

- \(X \) is *Cantorian* if there is a one-to-one correspondence between \(X \) and \(\{\{v\} : v \in X\} \); \(X \) is *strongly Cantorian* if the map sending \(v \) to \(\{v\} \) (as \(v \) varies in \(X \)) exists;

- \(H := \) “every Cantorian set is strongly Cantorian”

- \(\text{NFUA} := \text{NFU + Infinity + Choice + H} \).

- \(\text{NFUA}_{\text{fin}} := \text{NFUA}\{\text{Infinity}\} + \{\neg\text{Infinity}\} \).
• **Theorem** (Solovay, 1995) $\text{Con}(\text{ZFC}+\Lambda_0) \iff \text{Con}($NFUA$)$.

• **Theorem** (E 2002) The following are equivalent for a theory T in the language $\{\in\}$:

** (a) T is a consistent completion of $\text{ZFC}+\Lambda$.

** (b) There is a model M of NFUA such that $T = \text{Th}(\text{“Cantorian part of } V\text{”})^M$.

• **Theorem** (Solovay-E, 2002). The analogue of the above theorem holds for ZF_{fin} and NFUA_{fin}, in particular:

\[
\text{Con}(\text{NFUA}_{\text{fin}}) \iff \text{Con}(\text{ZF}_{\text{fin}}).
\]
Inevitability of \(\land \), Exhibit 5

- EST is ZFC \(\{ \text{Power Set, Replacement} \} + \Delta_0 \)-Separation.

- GW is the axiom in the language \(\{ \in, \triangleleft \} \) that is the conjunction of the following 4 axioms:

 (1) \(\triangleleft \) totally orders the universe; (2) Every nonempty set has a \(\triangleleft \)-least element, (3) \(x \in y \rightarrow x \triangleleft y \); (4) \(\forall x \exists y \forall z (z \in y \leftrightarrow z \triangleleft x) \).
Exhibit 5, Continued

• **Theorem** [E 2004]

 (a) For every completion T of $\text{ZFC} + \Lambda$ there is a model M_0 of $T + \text{ZF}(\langle \rangle) + \text{GW}$ such that M_0 has a proper e.e.e. M such that for some automorphism f of M, the fixed point set of f is M_0.

 (b) Moreover, if j is an automorphism of $M |\models \text{EST}$ whose fixed point set M_0 is a $\langle \rangle$-initial segment of N, then $M_0 \models \text{ZFC} + \Lambda$.

• **Theorem**

 (a) (Gaifman) *The analogue of (a) above for ZF_{fin}.*

 (b) (E 2004) *The analogue of (b) above for ZF_{fin} (with $1 - \Delta_0$ instead of EST).*