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Abstract

We establish the following model theoretic characterization of the
fragment I∆0+Exp+BΣ1 of Peano arithmetic in terms of fixed points
of automorphisms of models of bounded arithmetic (the fragment I∆0

of Peano arithmetic with induction limited to ∆0-formulae).

Theorem A. The following two conditions are equivalent for a count-
able model M of the language of arithmetic:
(a) M satisfies I∆0 + BΣ1 + Exp.
(b) M = Ifix(j) for some nontrivial automorphism j of an end exten-
sion N of M that satisfies I∆0.

Here Ifix(j) is the largest initial segment of the domain of j that is
pointwise fixed by j, Exp is the axiom asserting the totality of the
exponential function, and BΣ1 is the Σ1-collection scheme consisting
of the universal closure of formulae of the form

[∀x < a ∃y ϕ(x, y)] → [∃z ∀x < a ∃y < z ϕ(x, y)],
where ϕ is a ∆0-formula. Theorem A was inspired by a theorem of
Smoryński, but the method of proof of Theorem A is quite different
and yields the following strengthening of Smoryński’s result:
Theorem B. Suppose M is a countable recursively saturated model
of PA and I is a proper initial segment of M that is closed under
exponentiation. There is a group embedding j 7−→ ĵ from Aut(Q) into
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Aut(M) such that I = Ifix(ĵ) for every nontrivial j ∈ Aut(Q). More-
over, if j is fixed point free, then the fixed point set of ĵ is isomorphic
to M.
Here Aut(X) is the group of automorphisms of the structure X, and
Q is the ordered set of rationals.
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1. INTRODUCTION

In recent work [E-1, E-2] the author has embarked upon the project
of characterizing strong foundational axiomatic systems of set theory and
arithmetic in terms of the fixed point sets of automorphisms of models of
weak systems of set theory and arithmetic. For example [E-1, Theorem B]
shows that if j is a nontrivial automorphism of a model N of a weak sys-
tem of set theory whose set of fixed points form an initial segment of N,
then the set of fixed points gives rise to a model of full Zermelo-Fraenkel
set theory ZFC that additionally satisfies the scheme Φ asserting the exis-
tence of Σn-reflective n-Mahlo cardinals of all finite orders n. Moreover, this
result has a strong “reversal”: every completion of ZFC + Φ has a model
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M which has an elementary end extension to a model N that possesses a
nontrivial automorphism whose set of fixed points is precisely the universe
of M [E-1, Theorem A]. As explained in [E-1, E-2], this project is intimately
linked to the study of the metamathematics of the system NFU, the system
introduced by Jensen [J] as a modification of Quine’s unorthodox New Foun-
dations (NF ) system of set theory with a universal set introduced in [Q].
However, the fruits of the project can equally well be viewed as contributions
to the chapter of model theory that focuses on structural characterizations
of axiomatic theories, especially foundational ones1.

The paper [E-2] extended the set theoretical ideas initiated in [E-1] to
the realm of arithmetic and exhibited model theoretic characterizations of
PA (Peano arithmetic), ACA0 (arithmetical comprehension schema with
restricted induction), and Z2 (full second order arithmetic) in terms of au-
tomorphisms of models of bounded arithmetic (the fragment I∆0 of PA).
The characterization of PA in [E-2] is analogous to the aforementioned char-
acterization of ZFC + Φ: [E-2, Theorem B] shows that if j is a nontrivial
automorphism of a model N of I∆0 whose set of fixed points M form an
initial segment of N, then (M,⊕N,¯N) is a model of PA. Moreover, every
model M of PA has an elementary end extension to a model N that pos-
sesses a nontrivial automorphism j whose set of fixed points is precisely M
(the latter result is implicit in Gaifman’s [Ga], but it is given a new proof
in [E-2, Theorem A]).

In this paper we take a further step in the arithmetical realm of our
project by characterizing the important fragment I∆0 + Exp + BΣ1 of PA
in terms of automorphisms of models of I∆0. More specifically, in Theorem
A of Section 3 we prove that countable models of the language of first order
arithmetic that satisfy I∆0 + Exp + BΣ1 are precisely countable models of
the form

Ifix(j) := {x ∈ dom(j) : ∀y ≤ x j(y) = y},

where j is a nontrivial automorphism of a model of I∆0. This result was
motivated by a theorem, due to Smoryński [Sm], that shows that any proper
initial segment of a countable recursively saturated model M of PA that is

1Two prominent sources of work in this direction that deal with arithmetical theories
are those by Ressayre [R] and Kaye [Ka-1]. Ressayre’s work provides characterizations
of PA, and its fragment IΣ1, in terms of endomorphisms of models of I∆0 onto proper
initial segments of themselves. Kaye’s work, on the other hand, characterizes PA amongst
extensions of I∆0 + Exp in terms of the behavior of elementary extensions of its models.

3



closed under exponentiation can be realized as Ifix(j) for some automor-
phism j of M. However, our methods are quite different from Smoryński’s,
and as shown in Theorem B of Section 4, they yield a perspicuous proof of
an extension of his result. In Section 5 we discuss further work which charac-
terizes the conservative second order extension WKL∗0 of I∆0 +Exp+BΣ1.

Acknowledgments. I am indebted to the anonymous referee for helpful
comments on earlier drafts of the paper, and most importantly, for detecting
a gap in my initial attempt in establishing part (a) of Lemma 3.7. I am also
grateful to Roman Kossak and Jim Schmerl for steady encouragement, to
Zosia Adamowicz, Jeremy Avigad, Jerry Keisler, Joe Mileti, Steve Simpson,
and Robert Solovay for stimulating correspondence, and to Mauro Di Nasso
for inviting me to present my work in Pisa during June 2004.

2. PRELIMINARIES

In this section we review key notions and results regarding the meta-
mathematics of first order arithmetic that are central to this paper. We
refer the reader to the texts of Hájek-Pudlák [HP] and Kaye [Ka-2] for fur-
ther elaboration.

First Order Arithmetic

• The language of first order arithmetic, LA, is {+, ·, Succ(x), <, 0}.
• Models of LA are of the form M = (M,⊕M, · · ·),N = (N,⊕N, · · ·),

etc. For models M and N of LA, we say that N end extends M

(equivalently: M is an initial submodel of N), written M ⊆e N, if M

is a submodel of N and a < b for every a ∈ M, and b ∈ N\M. N is
a cofinal extension of M, written M ⊆c N if for every b ∈ N there is
some a ∈ M with a < b.

• Given a language L ⊇ LA, an L-formula ϕ is said to be a ∆0(L)-
formula if all the quantifiers of ϕ are bounded by terms of L, i.e., they
are of the form ∃x ≤ t, or of the form ∀x ≤ t, where t is a term of L not
involving x. ∆0(L)-formulae are also known as bounded formulas of L.
A Σ1(L)-formula is of the form ∃x ϕ, where ϕ is a ∆0(L) formula. We
shall omit the reference to L if L = LA, e.g., the set of ∆0-formulas
are simply the set of ∆0(LA)-formulas.
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• Bounded arithmetic, or I∆0, is the fragment of Peano arithmetic with
the induction scheme limited to ∆0-formulae. More specifically, it is
a theory formulated in the language LA, and is obtained by adding
the scheme of induction for ∆0-formulae to Robinson’s arithmetic Q.
When L ⊇ LA, we shall use I∆0(L) to refer to the extension of I∆0

which includes induction for ∆0(L)-formulas. The metamathematical
study of bounded arithmetic has close ties with the subject of compu-
tational complexity, see [HP] or [Kr] for thorough introductions.

• Every model M of I∆0 has an initial segment N consisting of the
standard elements of M. We use N+ to denote N\{0}, and use ω for
the order type of N.

• Bennett [Ben] showed that the graph of the exponential function y =
2x can be defined by a ∆0-predicate in the standard model of arith-
metic. This result was later fine-tuned by Paris2 who found another
∆0-predicate Exp(x, y) which has the additional feature that I∆0 can
prove the familiar algebraic laws about exponentiation for Exp(x, y)
[DG, Appendix 1], in particular:

Lemma 2.1. I∆0 proves the following statements:
(a) ∀x∃≤1y Exp(x, y);
(b) ∀x(∃y Exp(x, y) → ∀z < x∃y Exp(z, y));
(c) ∀x∀y (Exp(x, y) → Exp(x + 1, 2y)).

• By a classical theorem of Parikh, I∆0 can only prove the totality of
functions with a polynomial growth rate, hence

I∆0 0 ∀x∃yExp(x, y).

• I∆0 + Exp is the extension of I∆0 obtained by adding the axiom

Exp := ∀x∃yExp(x, y).

The theory I∆0+Exp might not appear to be particularly strong since
it cannot even prove the totality of the superexponential function, but
experience has shown that it is a remarkably robust theory that is able
to prove an extensive array of theorems of number theory and finite

2Independently, Pudlák [Pu] also provided an I∆0-treatment of the exponential func-
tion. There is also a detailed treatment of this topic in [Bu] and [HP, Section V3(c)].
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combinatorics. This has prompted Harvey Friedman to put forth the
conjecture that all “arithmetical theorems” proved in the journal An-
nals of Mathematics (such as Wiles’ proof of Fermat’s Last Theorem),
can be implemented within I∆0 + Exp. The reader interested in fur-
ther pursuing this topic is referred to Avigad’s thorough discussion in
[Av-2].

• For L ⊇ LA, BΣ1(L) is the scheme consisting of the universal closure
of formulae of the form

[∀x < a ∃y ϕ(x, y)] → [∃z ∀x < a ∃y < z ϕ(x, y)],

where ϕ(x, y) is a ∆0(L)-formula. It has been known since the work
of Parsons [Pars] that there are instances of BΣ1 that are unprovable
in I∆0 + Exp; indeed Parson’s work shows that even strengthening
I∆0 + Exp with the set of Π2-sentences that are true in the standard
model of arithmetic fails to prove all instances of BΣ1. However, Har-
vey Friedman and Jeff Paris have shown, independently, that adding
BΣ1 does not increase the Π2-consequences of I∆0+Exp [Ka-2, Corol-
lary 10.9]. See also [Sie], [Av-1], [Ka-3], [Bek], and [H] for further
refinements.

• I is a cut of M if I is a nonempty proper initial segment of M with
no last element.

• If I is a cut of a model M of I∆0 that is closed under addition and
multiplication, then we continue to use I to refer to the model

(I,⊕M,¯M, · · ·).

The following results will be useful in this paper.

Lemma 2.2. Suppose M is a model of I∆0(L), and let Sϕ be the solu-
tion set of some ∆0(L)-formula ϕ(x,a) in M, where a is a sequence of
parameters from M . If Sϕ 6= ∅, then:
(a) [∆0-MIN] Sϕ has a minimum element;
(b) [∆0-MAX] If Sϕ is bounded in M, then Sϕ has a maximum element;
(c) [∆0-OVERSPILL] If Sϕ includes a cut I of M, then for some b ∈ M\I,
{x ∈ M : x < b} ⊆ Sϕ.

Proof : A routine proof by contradiction proves (a), with ∆0(L) induction
applied to ϕ∗(v) := ∀x ≤ v ¬ϕ(v); (b) follows from (a) since the maximum
of Sϕ is the least upper bound of Sϕ, and (c) follows from (b).
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¤
Lemma 2.3. (Folklore, see [WP, Theorem 1]) If I is a cut of a model of
I∆0 that is closed under multiplication, then I satisfies I∆0 + BΣ1.

Theorem 2.4. (Wilkie-Paris [WP], see [Ad-1] for refinements). Every
countable model of I∆0 + Exp + BΣ1 has an end extension to a model
of I∆0 + BΣ1.

Remark 2.4.1. Theorem 2.4 above is slightly stronger than the original
form of the Paris-Wilkie result, which makes no mention of arranging the
end extension to satisfy BΣ1. However, using ∆0-OVERSPILL and Lemma
2.3, one can easily derive Theorem 2.4 from the original Paris-Wilkie result
as follows. Suppose M is a countable model of I∆0 + Exp + BΣ1, and let
M∗ be an end extension of M which satisfies I∆0. Choose d ∈ M∗\M, and
consider the ∆0-formula ϕ(x) := ∃y < d Exp(x, y). Since every m ∈ M is
a solution of ϕ(x), there is some c ∈ M∗\M for which 2c exists in M∗. The
desired end extension of M satisfying I∆0 + BΣ1 is the submodel of M∗

consisting of elements of M∗ that are less than cn for some n ∈ N.

Theorem 2.5. (Dimitracopoulos-Gaifman [DG, Prop. 2.3], see also [Bu,
Theorem 1.2.7.3, and its corollary]). Suppose M is a model of I∆0 + BΣ1

and F is the family of all M -valued functions f(x1, · · ·, xn) on Mn (where
n ∈ N+) such that for some Σ1-formula δ(x1, · · ·, xn, y), δ defines the graph
of f in M and for some term3 t(x1, · · ·, xn), f(a1, · · ·, an) ≤ t(a1, · · ·, an)
for all ai ∈ M. Then the expanded structure

MF := (M, f)f∈F

satisfies I∆0(LF ) + BΣ1(LF ), where LF is the result of augmenting the
language of arithmetic with names for each f ∈ F .

Remark 2.5.1. Since for each m ∈ M , the constant function cm : M →
{m} is a member of F , for all intents and purposes LF has a name for each
element of M .

3In this context, the notation t(x1, · · ·, xn) is employed for a term whose variables form
a subset of the displayed variables.
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Set Theory and Combinatorics within Bounded Arithmetic

One can use Ackermann coding to simulate finite set theory and combina-
torics within I∆0 by using a ∆0-predicate E(x, y) that reasonably expresses

“the x-th digit in the binary expansion of y is 1”,

see [HP]. E in many ways behaves like the membership relation ∈; in-
deed, it is well-known that M is a model of PA iff (M,E) is a model
of ZF\{Infinity} ∪ {¬Infinity}.

• We shall reserve the symbol E throughout the paper to refer to “Ack-
ermann’s ∈”.

When M is a model of I∆0, then (M,E) is still a model of a decent fragment
of set theory, as witnessed by the following result (see [DG], [HP, I.1(B)] for
more detail):

Theorem 2.6 If M ² I∆0(L), and E is Ackermann’s ∈, then M satisfies
the following axioms:
(a) Extensionality:

∀x∀y [(∀z(zEx ←→ zEy)) → x = y] ;

(b) Conditional Pairing [∀x∀y “if x < y and 2y exists, then {x, y} exists”]:

∀x∀y ((x < y) ∧ ∃u Exp(y, u)) → ∃t∀w (wEt ←→ (w = x) ∨ (w = y)) ;

(c) Union:
∀x∃y [∀z (zEy ←→ ∃u(zEu ∧ uEx))] ;

(d) Conditional Power Set [∀x(“If 2x exists, then the power set of x ex-
ists”)]:

∀x (∃y Exp(x, y) → (∃z∀w (wEz ←→ w ⊆ x))) .

where w ⊆ x abbreviates ∀t(tEw → tEx);

(e) Conditional ∆0(L)-Comprehension Scheme: for each formula ∆0(L)-
formula ϕ(x, y), and any z for which 2z exists, “ {xEz : ϕ(x, y)} exists”,
i.e.,

∀y∀z [∃s Exp(z, s) → ∃u∀t ( tEu ←→ (tEz ∧ ϕ(x, y)))] .

• We shall say that X ⊆ M is coded in M, if there is some c ∈ M such
that X = cE := {m ∈ M : mEc}.
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• Given c ∈ M, c := {x ∈ M : x < c}. Note that c is coded in a
M ² I∆0 provided 2c exists in M.

• Suppose I is a cut of M, SSyI(M) := {cE ∩ I : c ∈ N}. When I is the
standard cut N of M, then SSyI(M) is what is known in the literature
as the standard system of M.

• Within I∆0 one can define a partial function Card(x) = t, express-
ing “the cardinality of the set coded by x is t”. More specifically
Card(x) = t expresses “there is a bijection between xE and t”. It is
important to note that I∆0 can prove that Card(x) is defined (and
is well-behaved) if 2x exists (this is implicit in [HP, p.42, Theorem
1.41]).

• In light of the above discussion, finite combinatorial statements have
reasonable arithmetical translations in models of bounded arithmetic
provided “enough powers of 2 exist”. We shall therefore use the Erdős
notation a → (b)n

d for the arithmetical translation of the set theoretical
statement “if Card(X) = a and f : [X]n → d, then there is H ⊆ X
with Card(H) = b such that H is f -monochromatic.” Here [X]n

is the collection of increasing n-tuples from X (where the order on
X is inherited from the ambient model of arithmetic), and H is f -
monochromatic iff f is constant on [H]n.

• We also write a → ∗(b)n for the arithmetical translation of the follow-
ing canonical partition relation: if Card(X) = a and f : [X]n → Y ,
then there is H ⊆ X with Card(H) = b which is f-canonical, i.e.,
there is some S ⊆ {1, · · ·, n} such that for all sequences s1 < · · · < sn,
and t1 < · · · < tn of elements of H,

f(s1, · · ·, sn) = f(t1, · · ·, tn) ⇐⇒ ∀i ∈ S(si = ti).

Note that if S = ∅, then f is constant on [H]n, and if S = {1, · · ·, n},
then f is injective on [H]n.

• We need certain quantitative forms of Ramsey’s partition theorem, as
well as its canonical generalization by Erdős and Rado. Before stating
them, let us review the definition of the iterated exponential function,
dubbed the superexponential function Superexp(n, x) in this paper:
Superexp(0, x) = x, and

Superexp(n + 1, x) = 2Superexp(n,x).
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Thus for n ≥ 1, Superexp(n, x) is the exponential stack of length n+1,
where the top element is x, and the remaining n entries form a tower
of 2’s.

Theorem 2.7. For each n ∈ N+, the following is provable in I∆0 :

(a) [Ramsey] a → (b)n
c , if a = Superexp(2n, bc) and b ≥ n2;

(b) [Erdős-Rado] a → ∗ (b)n, if a = Superexp(4n, b · 222n2−n
) and b ≥ 4n2.

Proof: Part (a) follows immediately from Ramsey’s original proof (repro-
duced in [GRS]). Part (b) can be obtained by coupling (a) with the proof of
the Erdős-Rado canonical partition theorem [ER, Sec. 6]. More specifically,
the Erdős-Rado proof shows that a → ∗(b)n is derivable from a → (b)2n

f(n),
where f(n) is the number of partitions of [2n]2, i.e.,

f(n) := B(2n2 − n) < 222n2−n
.

Here B(s) is the number of partitions of an s-element set (by elementary
considerations B(s) < 22s

). For example, if a → (b)4203, then a → ∗(b)2 since
f(2) = B(6) = 203 (see [GRS, Theorem 2, Sec. 5.5]).
¤

Recursive Saturation

• M is recursively saturated if for every finite sequence m of elements
of M, every recursive finitely realizable type over the expanded model
(M,m) is realized in M.

• For M |= PA let F ⊆ M be the set of Gödel numbers of LA-formulas,
as computed in M (note that F will include nonstandard elements
if M is nonstandard). A satisfaction class of M is a subset S of M
satisfying the following two conditions:

(a) (M, S) ² PA(S), and

(b) S correctly codes the satisfaction relation of M for all standard
formulas.

Condition (b) can be written as a scheme consisting of the sentence (1)
below plus the collection of sentences (2n) below (for each n ∈ N+).

(1) S consists of coded ordered pairs of the form 〈a, b〉 , where a ∈ F
and b ∈ M ;
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(2n) [S is n-correct] S satisfies Tarski’s inductive conditions for a truth
predicate for all formulas of quantifier rank n (including any nonstan-
dard ones).

It is well-known that for each standard n there is a parameter free
definable subset Sn of M that satisfies (1) and (2n), but of course
Tarski’s undefinability of truth theorem dictates that any M-definable
S that satisfies (1) must fail (2n) for some n. Note that if S is a
satisfaction class of a nonstandard model of PA, then S is s-correct for
some nonstandard s. This follows from overspill and the fact that (2n)
can be uniformly expressed by a single formula ϕ(S, n) with parameter
n in the language of arithmetic augmented with the unary predicate
S.

The following two theorems tie the notion of recursive saturation with sat-
isfaction classes, and with cofinal extensions.

Theorem 2.8. (Barwise-Schlipf [BS]) A countable M model of PA is
recursively saturated iff M has a satisfaction class.

Theorem 2.9. (Smoryński-Stavi [Sm-St]) A cofinal extension of a recur-
sively saturated model of PA remains recursively saturated.

Theorem 2.8 can be derived from Theorem 2.7, coupled with the following
theorem (see also [Ka-2, Exercise 14.9]).

Theorem 2.10. (Kotlarski [Kot], Schmerl [Sc-1]) If M∗ is a cofinal ele-
mentary extension of a model M∗ of PA, and X ⊆ M is piecewise coded
(i.e., for every m ∈ M, m ∩X is coded in M), then there is a (unique) X∗

such that
(M, X) ≺ (M∗, X∗).

3. AUTOMORPHISMS AND I∆0 + Exp + BΣ1

Our point of departure is the following result that characterizes cuts
of countable recursively saturated models M of PA that are closed under
exponentiation as precisely those of the form Ifix(j), for some automorphism
j of M.
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Theorem 3.14. Suppose M is a model of PA.
(a) If j ∈ Aut(M), then Ifix(j) ² Exp;
(b) (Smoryński [Sm]) If M is countable and recursively saturated, and I is
a cut of M that satisfies Exp, then there are continuum-many j ∈ Aut(M)
such that I = Ifix(j).

The first principal result of this section (Lemma A.2) improves part (a)
of Theorem 3.1 by showing that part (a) remains valid upon replacing the
assumption M ² PA with the weaker assumption M ² I∆0. This result
shows that the mere existence of a nontrivial automorphism j of a model
M of I∆0 produces the cut Ifix(j) of M that satisfies the robust theory
I∆0 + Exp + BΣ1. We shall then establish a “reversal” of this result as
follows: beginning with a cut I of a countable model M of I∆0 that is
closed under exponentiation, we fine-tune an Ehrenfeucht-Mostowski-type
construction of Paris and Mills [PM] in order to build an extension of M

that (i) satisfies I∆0, (ii) does not introduce new elements below any i ∈ I,
and (iii) possesses an automorphism j such that Ifix(j) = I. Coupled with
Wilkie and Paris’s fundamental Theorem 2.4, this yields the reversal. To
summarize, in this section we shall prove:

Theorem A. The following two conditions are equivalent for a countable
model M of the language LA of arithmetic:
(a) M = Ifix(j) for some nontrivial automorphism j of a model M∗ of I∆0;
(b) M ² I∆0 + BΣ1 + Exp.

The Proof of (a) ⇒ (b) of Theorem A

The proof of (a) implies (b) of Theorem B is subdivided into the following
three lemmas.

Lemma A.0. Ifix(j) ² I∆0.

Proof: We first verify that Ifix(j) is closed under the operations of the
ambient structure M. Suppose x and y are elements of Ifix(j) with x ≤ y
and, without loss of generality, assume that x and y are both nonstandard
elements. Since x + y < xy ≤ y2, it suffices to show that y2 ∈ Ifix(j).
Observe that I∆0 can prove that any number z < y2 can be written as
z = qy + r, where both q and r are less than y (since the division algorithm

4Smoryński established the much harder part (b) of Theorem 3.1 and left the status of
part (a) as an open problem. It is not clear who first established part (a) of Theorem 3.1,
but by now it is considered part of the folklore, e.g., see [Ka-4, Proposition 2.2].
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can be implemented in I∆0, so q and r are respectively the quotient and
remainder of the division of z by y). Therefore,

j(z) = j(qy + r) = j(q)j(y) + j(r) = qy + r = z.

This shows that Ifix(j) is closed under the operations of M. Since Ifix(j) is
end extended by M (by definition), and ∆0-predicates are absolute for end
extensions, this shows that M inherits I∆0 from N.
¤
Lemma A.1. Ifix(j) ² BΣ1.

Proof: This lemma immediately follows from Lemma 2.3 and A.0 since j
is assumed to be a nontrivial automorphism, and therefore Ifix(j) must be
a cut of M that is closed under multiplication.

¤
Lemma A.2. Ifix(j) ² Exp.

Proof: The proof has three stages.
Stage 1: The argument establishing part (a) of Theorem 3.1 can be

carried out in the present context, i.e.,

(1) If a ∈ Ifix(j) and 2a is defined in M, then 2a ∈ Ifix(j).

To see this, we first observe that the usual proof of the existence of the base
2 expansion for a positive integer y can be implemented within I∆0 provided
some power of 2 exceeds y (see [HP] or [Bu]). Therefore, for every y < 2a,
there is some element c that codes a subset of {0, 1, ..., a− 1} such that

y =
∑

iEc

2i.

The next observation is that j(c) = c. This hinges on the fact that E
satisfies Extensionality, and that iEc implies j(i) = i (since a ∈ Ifix(j), and
iEc implies that i < a). Therefore,

j(y) = j(
∑

iEc

2i) =
∑

iEj(c)

2i =
∑

iEc

2i = y.

So every y < 2a is fixed by j and therefore 2a ∈ Ifix(j).

Stage 2: Let J := {m ∈ M : 2m is defined in M}. Note that J forms an
initial segment of M by Lemma 2.1. We claim:
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(2) {2m : x ∈ J} is cofinal in M.

(2) is established by contradiction: if some c ∈ M is an upper bound of K,
then K is the solution set of the ∆0-predicate ϕ(x, c), where

ϕ(x, c) := [x < c and ∃y < c Exp(x, y)].

Therefore by I∆0-MAX, there is a last power of 2 in M, which is absurd.

Stage 3: We now use (1) and (2) to prove that if a ∈ Ifix(j), then 2a is
defined and is a member of Ifix(j). In light of (1), it suffices to show that
Ifix(j) ( J , where J is the cut defined in stage 2. To see that Ifix(j) (
J assume to the contrary that J ⊆ Ifix(j). It follows from (1) and (2)
that Ifix(j) = M, which contradicts the assumption that j is a nontrivial
automorphism.
¤
Remark 3.2. If I is a cut closed under exponentiation, then I is closed
under addition and multiplication. To see this, note that I∆0 can prove
that if 1 < x ≤ y, then

x + y ≤ xy ≤ 2x+y ≤ 22y
.

This shows that Lemma A.0 follows from Lemma A.2.

The Proof of (b) ⇒ (a) of Theorem A

The initial step of our proof of (b) ⇒ (a) of Theorem A involves the con-
struction of an appropriate ultrafilter, accomplished in Theorem 3.3 below.

• Throughout this section, M is a model of I∆0 + BΣ1, I is a cut of
M that satisfies Exp and c ∈ M\I such that 2c exists in M (such an
element c exists by ∆0-OVERSPILL, see Remark 2.4.1).

• F and LF are as in Theorem 2.5, and Fc is the family of all M -valued
functions f(x1, · · ·, xn) on [c]n (where n ∈ N) obtained by restricting
the domains of n-ary functions in F to [c]n.

• Recall that c is the set of predecessors of c. For a coded subset X of
c, P(X) is the power set of X in the sense of (M,E).

14



• U ⊆ P(c) is a filter if U is closed under intersections and is upward
closed.

• A filter U ⊆ P(c) is I-complete, if for every f ∈ Fc and i ∈ I, if
f : c → i, then there is some X ∈ U such that f is constant on X.
Note that if U is I-complete, then U is an ultrafilter on P(c), since for
each Y ∈ P(c) the characteristic function χY of Y is constant on some
member of U . We therefore refer to I-complete filters as ultrafilters.

• An ultrafilter U ⊆ P(c) is nonprincipal, if U does not contain any
singletons.

• A filter U ⊆ P(c) is Ramsey if for every f ∈ Fc, and every n ∈ N+, if
f : [c]n → {0, 1}, then there is some f -monochromatic H ∈ U .

• A filter U ⊆ P(c) is canonically Ramsey if for every f ∈ Fc, and every
n ∈ N+, if f : [c]n → M, then there is some H ∈ U such that H is
f -canonical. It is easy to see that if U is canonically Ramsey, then U
is Ramsey.

• A filter U ⊆ P(c) is I-tight if for every f ∈ Fc, and every n ∈ N+, if
f : [c]n → M, then there is some H ∈ U such either f is constant on
H, or there is some m0 ∈ M\I such that f(x) > m0 for all x ∈ [H]n.

Theorem 3.3. P(c) carries a nonprincipal ultrafilter U satisfying the fol-
lowing four properties:
(a) U is I-complete;
(b) U is canonically Ramsey;
(c) U is I-tight;
(d) {Card(X) : X ∈ U} is downward cofinal in M\I.

• Let us say that X ∈ P(c) is I-large iff Card(X) /∈ I. The proof of
Theorem 3.3 is based on Lemmas 3.3.1 through 3.3.3 which reveal
salient combinatorial features of I-large sets.

Lemma 3.3.1. If X is I-large, and f : c → m for some nonzero m ∈ I
with f ∈ Fc, , then there is some I-large subset of X on which f is constant.

Proof: Let
⌊

x
y

⌋
= max{t ≤ x : ty ≤ x}. First observe that, in light of

Remark 3.2, I is closed under multiplication and therefore if b /∈ I and

15



m ∈ I, then
⌊

b
m

⌋
/∈ I. Now suppose that for some b ∈ M\I, Card(X) = b,

and let
Si := {x ∈ X : f(x) = i}.

Note that by Theorems 2.5 and 2.6(e) each Si is coded in M. It is easy to
see that there is some i for which Card(Si) ≥

⌊
b
m

⌋
, since otherwise for all

i ≤ m,

Card(Si) <

⌊
b

m

⌋
− 1,

which, coupled with X =
⋃

i<m
Si implies the following contradiction:

b = Card(X) < m(
⌊

b

m

⌋
− 1) ≤ b−m.

¤
Lemma 3.3.2. If f : [X]n → M , where X is I-large, f ∈ Fc, and n ∈ N+,
then there is an I-large subset of X that is f-canonical.

Proof: Suppose i ∈ I. The closure of I under exponentiation implies that

∃j ∈ I M ² j = Superexp(4n, i · 222n2−n
).

Therefore by part (b) of Theorem 2.7 if i ≥ 4n2, then i is a solution of the
∆0(LF )-predicate “there is an f -canonical subset of X cardinality i” (this
is a bounded statement since the monochromatic subset will be an element
of P(X), and P(X) is coded). By Theorem 2.5 and ∆0(LF )-OVERSPILL,
therefore, there is an I-large subset of X that is f -canonical.
¤
Lemma 3.3.3. If X and f are as in Lemma 3.3.2, then there is an I-
large Y ⊆ X such that either (a) f is constant on Y , or (b) there is some
m0 ∈ M\I such that f(x) > m0 for all x ∈ [Y ]n.

Proof: For m ∈ M define the function fm : [X]n → {0, 1} in M by defining
fm(x) = 0 iff f(x) ≤ m. By Lemma 3.3.2, each fm has an I-large monochro-
matic subset Ym ⊆ X. We now consider two cases:

Case I : For some i ∈ I, f(Yi) = {0};
Case II : For every i ∈ I, f(Yi) = {1}.
Suppose Case I holds, and f(Yi) = {0} for some i ∈ I. Then by Lemma
3.3.1, there is an I-large subset of Yi on which f is constant. Therefore (a)
is true if Case I holds. Case II, on the other hand, requires an overspill
argument. Consider the following ∆0(LF )-formula ϕ(v):

16



ϕ(v) := ∃Y ∈ P(X) (Card(Y ) > v and fv(x) = 1 for all x ∈ [Y ]n).

If Case II holds then every element of I is a solution of ϕ(v) and therefore
by ∆0(LF )-OVERSPILL there is some m0 ∈ M\I that is a solution of ϕ(v),
i.e., there is some Y ⊆ X such Card(Y ) = m0 /∈ I and for all x ∈ [Y ]n,
f(x) > m0. This shows that (b) is true if Case II holds.
¤

We are now in a position to present:

Proof of Theorem 3.3. Let 〈fn : n < ω〉 enumerate all maps in Fc whose
domain is c and whose range is bounded in I; 〈gn : n < ω〉 enumerate all
maps in Fc, with gn : [c]kn → M (note that for a fixed n, kn is also fixed);
and fix a sequence 〈an : n ∈ ω〉 of elements of M which is downward cofinal in
M\I with a0 ≤ c. Using Lemmas 3.3.1 through 3.3.3, and truncation, we can
inductively build four sequences 〈Wn : n < ω〉 , 〈Xn : n < ω〉 , 〈Yn : n < ω〉,
and 〈Zn : n < ω〉 of I-large elements of P(c) such that for all n < ω :

1. Wn ⊇ Xn ⊇ Yn ⊇ Zn ⊇ Wn+1;

2. fn is constant of Wn;

3. Xn is gn-canonical;

4. gn is constant on Yn, or ∃m0 ∈ M\I such that gn(x) > m0 for all
x ∈ [Yn]kn ;

5. Card(Zn) < an.

This desired ultrafilter U is {S ∈ P(c) : ∃n ∈ ω (Wn ⊆ S)}.
¤

In the next step, we use the ultrafilter U constructed in Theorem 3.3
to build a family of models NU ,L where L is a prescribed linear order, such
that NU ,L is an extension of M that satisfies I∆0 and possesses desirable
automorphisms.

• Let U be the ultrafilter produced in Theorem 3.3, and For each n ∈ N+,
consider the family of (partial) n-types Γn(x1, · · ·, xn) over LF defined
via: ϕ(x1, · · ·, xn) ∈ Γn(x1, · · ·, xn) iff

∃S ∈ U such that MF ² ϕ(a1, · · ·, an) for all sequences a1 < · · · < an

from S.

• TU =
⋃

n∈N+

Γn(x1, · · ·, xn).
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• Given a linear order L, LF ,L is the language obtained from augmenting
LF with constant symbols l for each l ∈ L.

• The theory TU ,L is formulated within LF ,L via:

TU ,L := {ϕ(l1, l2, · · ·, ln) : ϕ ∈ TU and l1 <L l2 <L · · · <L ln}.

Lemma 3.4. TU ,L is consistent and is ∆0(LF ,L)-complete.

Proof: TU ,L is consistent since it is finitely satisfiable in M. To verify
∆0(LF ,L)-completeness of TU ,L, suppose ϕ(x1, · · ·, xn) is a ∆0(LF )-formula
and consider

S := {(x1, · · ·, xn) ∈ (c)n : MF ² ϕ(x1, · · ·, xn)}.

It is easy to see that the characteristic function χS of S is a member of F .
Therefore, by the Ramsey property of U there is some H ∈ U on which χS

is constant. Hence either ϕ(x1, · · ·, xn) or its negation is in Γn(x1, · · ·, xn).
¤

• NU ,L is the model of arithmetic described by TU ,L, more specifically:

(a) The universe NU ,L of NU ,L consists of the equivalence classes [τ ] of
terms τ of LF of the form τ = f(l1, ···, ln), where f ∈ F , (l1, l2, ···, ln) ∈
[L]n, and equivalence relation ∼ at work is defined via

f(l1, · · ·, lr) ∼ g(l′1, · · ·, l′s) ⇐⇒ (f(l1, · · ·, lr) = g(l′1, · · ·, l′s)) ∈ TU ,L;

(b) The operations and the ordering relation of NU ,L are those natu-
rally given by TU ,L, e.g.,

[f(l1, · · ·, lr)]⊕
[
g(l′1, · · ·, l′s)

]
= [h(l′′1 , · · ·, l′′t )]
m

(f(l1, · · ·, lr) + g(l′1, · · ·, l′s) = h(l′′1 , · · ·, l′′t )) ∈ TU ,L,

and

[f(l1, · · ·, lr)] C
[
g(l′1, · · ·, l′s)

] ⇐⇒ (f(l1, · · ·, lr) < g(l′1, · · ·, l′s)) ∈ TU ,L,

(it is routine to verify that the operations and relation of NU ,L are
well-defined.
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• There is an embedding e1 : M → NU ,L given by

m 7−→e1 [cm(l)],

where l ∈ L. Moreover, there is an embedding e2 : L→ (NU ,L,C) via

l 7−→e2 [id(l)],

where id : M → M is the identity function. In this light, we shall
identify the element [cm(l)] of NU ,L with m, and the element [id(l)]
with l.

Lemma 3.5. Suppose ϕ(x1, ···, xk) is a Σ1-formula of LA with the indicated
free variables, and [τ1] , · · ·, [τk] are elements of NU ,L. The following two
conditions are equivalent:

(a) NU ,L ² ϕ([τ1] , · · ·, [τk]);

(b) ϕ ([τ1] , · · ·, [τk]) ∈ TU ,L.

Proof: The proof of Lemma 3.5 is reminiscent of the proof of the funda-
mental theorem of ultraproducts and employs induction on the complexity
of formulas. When ϕ is atomic, the equivalence of (a) and (b) is trivially
implied by the definition of the operations and the ordering relation on
NU ,L. The inductive argument establishing the equivalence of (a) and (b)
also easily goes through when ϕ is of the form θ1 ∧ θ2. However, the nega-
tion and existential quantification steps merit a brief explanation. For the
negation step, suppose θ(x1, · · ·, xk) is a ∆0-formula such that (a) and (b)
are equivalent for any choice of k elements from NU ,L with ϕ = θ . The
equivalence of (a) and (b) for ϕ = ¬θ can then be easily established by
considering the LF ,L-formula θ(τ1, · · ·, τk), and invoking Lemma 3.4 to get
hold of some A ∈ U such that either θ(τ1, · · ·, τk) or its negation is in TU ,L.
For the existential quantification step, the inductive proof of (a) ⇒ (b) is
easy to establish, but the proof of (b) ⇒ (a) is more delicate and requires
the following claim regarding the existence of ∆0-Skolem functions in F .

Claim ♣. If for some ∆0(LF )-formula ψ(x1, · · ·, xn, y),
(i) MF ² ∀x1 · · · ∀xn ((x1 < · · · < xn < c) → ∃y ψ(x1, · · ·, xn, y)),
then there exists g(x1, · · ·, xn) ∈ F such that:
(ii) MF ² ∀x1 · · · ∀xn ((x1 < · · · < xn < c) → ψ(x1, · · ·, xn, g(x1, · · ·, xn))) .

To verify Claim ♣, assume (i) and let δ(x1, ···, xn, y) abbreviate the following
∆0(LF )-formula:

(ψ(x1, · · ·, xn, y) ∧ ∀z < y ¬ψ(x1, · · ·, xn, z)) .
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By ∆0(LF )-MIN and BΣ1(LF ), there is some b ∈ M such that

MF ² ∀x1 · · · ∀xn ((x1 < · · · < xn < c) → ∃!y < b δ(a1, · · ·, an, y)) .

Let g be the function on Mn whose graph is defined by g(a1, · · ·, an) = an+1

iff

MF ² ((a1 < · · · < an < c) ∧ δ(a1, · · ·, an, an+1))∨(¬(a1 < · · · < an < c) ∧ (an+1 = 0)) .

It is easy to see that g ∈ F and g satisfies (ii). This concludes the verification
of Claim ♣.

Going back to the existential quantification step of the proof of Lemma
3.5, suppose that for some formula ∃y θ(x1, · · ·, xk, y), where θ is a ∆0-
formula, the equivalence of (a) and (b) holds for ϕ = θ(x1, · · ·, xk, y) for any
choice of k + 1 elements from NU ,L. To verify that (b) ⇒ (a), suppose (b)
holds for ϕ = ∃y θ for some choice [τ1] , · · ·, [τk] of elements from NU ,L. To
simplify notation, we shall assume that for some choice of (l1, l2, · · ·, ln) ∈
[L]n, each τi can be written as fi(l1, l2, · · ·, ln). The definition of TU ,L shows
that there is some A ∈ U such that for all (a1, · · ·, an) ∈ [A]n,

M ² ∃y θ(f1(a1, · · ·, an), · · ·, fk(a1, · · ·, an), y).

Let d ∈ M be an element coding A, α(x1, · · ·, xn) be the formula

n∧

i=1

(xi E d) ∧
n−1∧

i=1

(xi < xi+1) ,

and ψ(x1, · · ·, xn, y) be the conjunction of the formula

α(x1, · · ·, xn) → θ(f1(x1, · · ·, xn), · · ·, fk(x1, · · ·, xn), y)

with the formula
(¬α(x1, · · ·, xn)) → y = 0.

Note that ψ(x1, · · ·, xn, y) is a ∆0(LF )-formula since E has a ∆0-definition
and we have access to a name for d in LF (see Remark 2.5.1). By Claim ♣,
there is some g(x1, · · ·, xn) ∈ F such that for every (a1, · · ·, an) ∈ [A]n,

MF ² ψ(a1, · · ·, an, g(a1, · · ·, an)).

Coupled with the inductive hypothesis, this shows the following, thus con-
cluding the proof of (b) ⇒ (a) of the existential quantification step:

NU ,L ² θ([τ1] , · · ·, [τk] , [g(l1, · · ·, ln)]).
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¤
Lemma 3.6.
(a) M is cofinal in NU ,L;
(b) NU ,L satisfies I∆0;
(c) L is a set of Σ1-indiscernibles in NU ,L;
(d) NU ,L end extends I;
(e) M\I is downward cofinal in NU ,L\I.

Proof: (a) is a consequence of M ² BΣ1, and Lemma 3.5 immediately
implies (b) and (c). The I-completeness of U , coupled with Lemma 3.5,
yields (d). To verify (e), suppose

[f(l1, l2, · · ·, ln)] ∈ NU ,L\I.

Since U is I-tight, there is some H ∈ U such either f is constant on H or
there is some m0 ∈ M\I such that f(x) > m0 for all x ∈ [H]n. Therefore,
by Lemma 3.5 there is some m0 ∈ M\I such that m0 ≤ [f(l1, l2, · · ·, ln)].
¤

• In what follows, fix (ĵ) is the fixed point set of ĵ.

Lemma 3.7. Every automorphism j of L induces an automorphism ĵ of
NU ,L such that j 7→ ĵ is a group embedding of Aut(L) into Aut(NU ,L).
Moreover,
(a) Ifix(ĵ) = I for every nontrivial j ∈ Aut(L);
(b) fix (ĵ) = M for every fixed point free j ∈ Aut(L).

Proof: The fact that an automorphism j of L induces an automorphism ĵ of
NU ,L follows from the same line of reasoning used in the classical argument of
Ehrenfeucht and Mostowski and is based on the fact that NU ,L is generated
by a copy of L via the functions in F . In other words, since each element of
NU ,L can be represented as [f(l1, · · ·, ln)] for an appropriate choice of f ∈ F
and l1, · · ·, ln of L, the desired ĵ can be defined via:

(∗) ĵ([f(l1, · · ·, ln)]) = [f(j(l1)), · · ·, j(ln))].

It is easy to see, using (∗) above, that the correspondence j 7→ ĵ indeed
defines a group embedding of the automorphism group Aut(L) of L into the
automorphism group Aut(NU ,L) of NU ,L.

We now verify that for a nontrivial automorphism j of L, ĵ fixes members
of I, but moves elements arbitrarily close to I. First note that if j ∈ Aut(L),
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then ĵ fixes each element of M (since each element of M is represented by
a constant function of F). This shows, a fortiori, that ĵ fixes members of I.
Recall from Theorem 3.3 that there is a sequence 〈an : n ∈ ω〉 of elements
of M\I that are downward cofinal in M\I, and a sequence 〈Zn : n ∈ ω〉 of
elements of U such that Card(Zn) < an. Consider the sequence of terms
〈τn(x) : n ∈ ω〉 of LF defined by:

τn(x) := y iff x is the y-th element of Zn under its natural ordering.

Note that τn(x) < an. Now, if j ∈ Aut(L) with j(k) = l 6= k, then

ĵ(τn(k)) = τn(l).

By the definition of TU ,L, k and l are (distinct) members of Xn. But since
τn(x) defines a one–to-one map, ĵ moves an element below an, namely τn(k).
In light of the fact that the an’s were chosen to be downward cofinal in M\I,
and M\I is downward cofinal in NU ,L\I (by Lemma 3.6(e)), this shows that
Ifix(ĵ) = I.

We now verify (b). We already know that M ⊆ fix (ĵ) for every j ∈
Aut(L). To see that fix (ĵ) ⊆ M for a fixed point free j, suppose that for
some element [f(l1, · · ·, ln)] of NU ,L

(1) [f(j(l1), · · ·, j(ln))] = [f(l1, · · ·, ln)],

Since f ∈ F and U is F-canonically Ramsey, there is some H ∈ U and some
S ⊆ {1, · · ·, n} such that for all sequences x1 < · · · < xn and y1 < · · · < yn

of elements of H,

(2) f(x1, · · ·, xn) = f(y1, · · ·, yn) ⇐⇒ ∀i ∈ S (xi = yi).

Therefore, by Lemma 3.5,

(3) For all l1 < · · · < ln and k1 < · · · < kn from L,

[f(l1, · · ·, ln)] = [f(k1, · · ·, kn)] ⇐⇒ ∀i ∈ S (li = ki).

Coupled with (1), (3) shows that S = ∅. So f must be constant on H,
thereby showing that [f(l1, · · ·, ln)] ∈ M , as desired.
¤

Putting Lemmas 3.4 through 3.7 together, we obtain the following gen-
eral result.
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Theorem 3.8. Suppose L is a linearly ordered set, and U satisfies properties
(a), (b), (c) and (d) of Theorem 3.3. The model NU ,L satisfies the following
properties:

(a) M ⊆ NU ,L and I ⊆e NU ,L;
(b) For a Σ1-formula ϕ(x1, ···, xn), and (l1, ···, ln) ∈ [L]n, NU ,L ² ϕ(l1, ···, ln)
iff

∃S ∈ U ∀(a1, · · ·, an) ∈ [S]n M ² ϕ(a1, · · ·, an);

(c) L is a set of Σ1-indiscernibles in NU ,L;
(d) Every j ∈ Aut(L) induces an automorphism ĵ ∈ Aut(NU ,L) such that
j 7→ ĵ is a group embedding of Aut(L) into Aut(NU ,L);
(e) If j ∈ Aut(L) is nontrivial, then Ifix(ĵ) = I;
(f) If j ∈ Aut(L) is fixed point free, then fix( ĵ) = M .

Remark 3.8.1. If M is a model of full PA, then the restriction to Σ1-
formulas in Lemma 3.5, and to ∆0-formulas in Lemma 3.6 can be both elim-
inated. This in turn allows the restriction to the corresponding restrictions
to be eliminated from Theorem 3.8.

We are now in a position to complete the proof of Theorem A.

Proof of (b) =⇒ (a) of Theorem A:

Suppose M0 is a countable model of I∆0 +BΣ1 +Exp. By Theorem 2.4,
M0 can be end extended to a model M that satisfies I∆0. This allows us
to invoke Theorem 3.3 (with I := M0) to produce an ultrafilter U satisfying
conditions (1) through (3) of Theorem 3.3. By Theorem 3.8, the ultrafilter
U can be used to give rise to the model NU ,Z, where Z is the ordered set
of integers (note that NU ,Z satisfies I∆0 and M0 ⊆e NU ,Z). Let j be any
nontrivial automorphism of Z, e.g., j(n) = n + 1. By Theorem 3.8(e), ĵ is
an automorphism of NU ,Z with the property Ifix(ĵ) = M, as desired.
¤

Theorem A, combined with the downward Löwenheim-Skolem theorem,
yields:

Corollary 3.9. I∆0 +BΣ1 +Exp is the theory of the class of models whose
universes are of the form Ifix(j) for some nontrivial automorphism j of a
model of I∆0, i.e., the following are equivalent for sentences ϕ in LA :
(a) I∆0 + BΣ1 + Exp ` ϕ.
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(b) ϕ holds in every model of the form Ifix(j), where j is a nontrivial au-
tomorphism of some model of I∆0.

Remark 3.10. By a theorem of Solovay [Pari, Theorem 4] every countable
recursively saturated model M of I∆0+BΣ1 is isomorphic to a proper initial
segment of itself, and therefore M has an end extension that satisfies I∆0.
This result can be substituted for the Wilkie-Paris theorem (Theorem 2.4)
in the proof of Corollary 3.9 since every consistent countable theory has a
countable recursively saturated model.

4. SMORYŃSKI’S THEOREM, REVISITED

Smoryński’s theorem (part (b) of Theorem 3.1) was established in [Sm]
by an elaborate back and forth argument (see also [Ka-4]). We now explain
how to derive an extension of this result with an entirely different proof,
using our work in the previous section. This new proof can be summarized
as follows:
(1) If M is a model of PA, then as pointed out in Remark 3.8.1 the model
NU ,L of Theorem 3.8 turns out to be a cofinal elementary extension of M.
Indeed, this is precisely what is accomplished by Paris and Mills in [PM,
Theorem 6];
(2) By an appropriate choice of ultrafilter U , M and NU ,L can be arranged
to have the same I-standard system;
(3) If M and NU ,L have the same I-standard system, M is recursively satu-
rated, and L is countable, then M can be shown to be isomorphic to NU ,L
via an isomorphism that is the identity on I. Smoryński’s theorem now fol-
lows from Theorem 3.8 by representing M as NU ,Q, where Q is the ordered
set of rationals (recall: |Aut(Q)| = 2ℵ0).

• To set the stage, suppose M ² I∆0, I is a cut of M closed under
exponentiation, and c ∈ M\I such that for each n ∈ N, 2(cn) exists.
This will ensure that for each n ∈ N+, there is an element in M that
codes all subsets of the Cartesian product (c)n that are coded in M

(in order words: P(cn) exists in M). Thanks to ∆0-OVERSPILL,
this is easy to arrange since every member of I is a solution of the
∆0-predicate ϕ(x) := “22x

exists” and therefore there is c ∈ M\I for
which 2(2c) exists in M (recall that for nonstandard c and n ∈ N+,
cn < 2c).
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• A subset X of c decides a subset K of [c]n (where n ∈ N+) if either
[X]n ⊆ K or [X]n ⊆ [c]n\K.

• A filter U ⊆ P(c) is I-conservative if for every n ∈ N+ and every
M-coded sequence 〈Ki : i < c〉 of subsets of [c]n there is some X ∈ U
and some d ∈ M with I < d ≤ c such that ∀i < d X decides Ki.

The following result explains the importance of I-conservative ultrafilters.
In what follows M, U , and NU ,L are as in the previous section.

Lemma 4.1. If U is I-conservative, then SSyI(NU ,L) = SSyI(M).

Proof: Since I ⊆e NU ,L and NU ,L extends M, SSyI(NU ,L) ⊇ SSyI(M).
To see that SSyI(NU ,L) ⊆ SSyI(M), suppose [f(l1, · · ·, ln)] is a member of
NU ,L, and define Af(l1,···,ln) via:

Af(l1,···,ln) := {i ∈ I : NU ,L ² iE [f(l1, · · ·, ln)]}.

We wish to show

(1) Af(l1,···,ln) ∈ SSyI(M).

Consider the M-coded sequence 〈Ki : i < c〉 defined by

Ki := {(a1, · · ·, an) ∈ [c]n : MF ² iEf(a1, · · ·, an)}.

Note that by Lemma 3.5,

(2) Af(l1,···,ln) = {i ∈ I : ∃X ∈ U such that [X]n ⊆ Ki}.

Invoking the I-conservativity of U , for some X0 ∈ U and d ∈ M with
I < d ≤ c, ∀i < d X0 decides Ki.
Therefore Af(l1,···,ln) = {i ∈ I : [X0]n ⊆ Ki}, which makes it evident that
(1) holds and the proof is complete.
¤
In order to show that the ultrafilter U employed in the construction of NU ,L
can be arranged to be I-conservative we need to establish another combina-
torial property of I-large sets in the next lemma.

Lemma 4.2. Suppose S is I-large and 〈Ki : i < c〉 is an M-coded sequence
of subsets of [S]n for some fixed n ∈ N+. Then there is some d with
I < d ≤ c, and some I-large subset S′ of S such that S′ decides Ki for all
i < d.

25



Proof: Given any i < c consider the map

Fi : [S]n → {0, 1}i,

defined by: for 1 ≤ j ≤ i, the j-th coordinate of Fi(x) = 1 iff x ∈ Kj (where
x ∈[S]n). Since I is closed under exponentiation, and Card({0, 1}i) = 2i,
Fi can be viewed as Fi : [S]n → k for k := 2i ∈ I. Therefore, by part (a) of
Theorem 2.7, for every i ∈ I, the following ∆0-formula holds in M:

(1) There is some Fi-monochromatic X ⊆ S such that Card(X) > i.

It is easy to see that (1) implies that for each i ∈ I , the following ∆0-formula
holds in M:

(2) ∃X ⊆ S such that ∀j ≤ i, X is χKj -monochromatic and Card(X) > i
(here χKj is the characteristic function of Kj).

By coupling ∆0-OVERSPILL and (2), we obtain

(3) For some d > I, ∃S′ ⊆ S such that ∀j ≤ d, S′ is χKj -monochromatic
and Card(X0) > d.

It is now easy to see that the S′ of (3) will serve as the desired I-large subset
of S.
¤
Theorem 4.3. Theorem 3.3 can be strengthened by requiring that the ul-
trafilter U be additionally I-conservative.

Proof: Enumerate all M-coded sequences of length c of subsets of finite
Cartesian powers of c as 〈hn : n < ω〉. More specifically, each hn codes a se-
quence of the form 〈Si : i < c〉, where every Si is a subset of [c]mn and mn ∈
N+ only depends on n. Thanks to Lemma 4.2, we can now modify the proof
of Theorem 3.3 by inductively constructing five sequences 〈Vn : n < ω〉 ,
〈Wn : n < ω〉 , 〈Xn : n < ω〉 , and 〈Yn : n < ω〉 and 〈Zn : n < ω〉 of I-large
elements of P(c) such that for all n < ω,

1. Vn ⊇ Wn ⊇ Xn ⊇ Yn ⊇ Zn ⊇ Vn+1;

2. Vn decides every member of the sequence coded by hn;

3. fn is constant on Wn;

4. Xn is gn-canonical;
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5. gn is constant on Yn, or ∃m0 ∈ M\I such that gn(x) > m0 for all
x ∈ [Yn]kn ;

6. Card(Zn) ≤ an.

This desired ultrafilter U is {S ∈ P(c) : ∃n ∈ ω (Vn ⊆ S)}.
¤
Suppose M and M∗ are two models of bounded arithmetic that share a cut
I closed under exponentiation. It is clear that if there is an isomorphism be-
tween M and M∗ that is the identity on I, then Th(M, i)i∈I = Th(M∗, i)i∈I ,
and SSyI(M) = SSyI(M∗). As shown by the next lemma, this result has a
converse if M∗ is a cofinal elementary extension of M, and both M and M∗

are countable recursively saturated models of PA.

Lemma 4.4. Suppose I is a cut closed under exponentiation in a countable
recursively saturated model M of PA, and M∗ is a cofinal countable elemen-
tary extension of M such that I ⊆e M∗ with SSyI(M) = SSyI(M∗). Then
M and M∗ are isomorphic over I, i.e., there is an isomorphism between M

and M∗ that is the identity on I.

Proof: The desired isomorphism can be constructed via a routine back-
and-forth argument, once we establish the following central claim:

Claim: Suppose n ∈ N and (M, a1, · · ·, an, i)i∈I ≡ (M∗, b1, · · ·, bn, i)i∈I .

(a) For every c ∈ M there is d ∈ M∗ such that

(M, a1, · · ·, an, c, i)i∈I ≡ (M∗, b1, · · ·, bn, d, i)i∈I ;

(b) For every d ∈ M∗ there is c ∈ M such that

(M, a1, · · ·, an, c, i)i∈I ≡ (M∗, b1, · · ·, bn, d, i)i∈I .

We shall prove part (b) of the claim only. The proof of part (a) is left as
an exercise for the reader (it is similar and does not need the assumption
SSyI(M) = SSyI(M∗)). It is well-known that the isomorphism type of a
countable recursively saturated model M of arithmetic is uniquely deter-
mined by Th(M) and SSyN(M). We may therefore assume, without loss of
generality, that I is longer than N. By Theorem 2.8 there is a satisfaction
class S on M that is s-correct for some nonstandard s. Since I 6= N, by
shortening S and s, if necessary, we can also safely assume that

(1) s ∈ I and 〈dϕe , a〉 ∈ S =⇒ dϕe < s.
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Theorem 2.9 implies that there is some s-correct satisfaction class S∗ on M∗

such that (M, S) ≺ (M∗, S∗) and (1) holds with S replaced by S∗.

Suppose that a := (a1, · · ·, an), b := (b1, · · ·, bn), and

(2) (M,a, i)i∈I ≡ (M∗,b, i)i∈I .

Given d ∈ M∗ we wish to find some c ∈ M such that

(M,a, c, i)i∈I ≡ (M∗,b, d, i)i∈I .

To do so, first consider Y ⊆ I defined as follows:

Y := {〈i, dϕ(x,y, z)e〉 : i ∈ I and 〈dϕ(x,y, z)e , 〈i,b, d〉〉 ∈ S∗}.

Recall that, intuitively speaking, 〈dϕ(x,y, z)e , 〈i,b, d〉〉 ∈ S∗ if the poten-
tially nonstandard formula ϕ(i,b, d) is true in the sense of S∗. It is easy to
see, using that fact that (M∗, S∗) satisfies PA(S∗), that Y ∈ SSyI(M∗).
Furthermore, for any i ∈ I and any standard formula ϕ(x,y, z) with y :=
(y1, · · ·, yn),

M∗ ² ϕ(i,b, d) ⇐⇒ 〈i, dϕ(x,y, z)e〉 ∈ Y.

For each i ∈ I, let
Yi := {〈j, dϕe〉 ∈ Y : j < i}.

The assumption that I is closed under exponentiation together with (1)
implies that for each i ∈ I there is some mi ∈ I such that

Yi = (mi)E .

Clearly

(3) If dϕe < s and i ∈ I, then (M∗,b, d) satisfies:

∀j < i (〈dϕ(x,y, z)e , 〈j,b, d〉〉 ∈ S∗ ←→ 〈j, dϕ(x,y, z)e〉Emi) .

Therefore

(4) If dϕe < s and i ∈ I, then (M∗,b) satisfies:

∃z0 ∀j < i (〈dϕ(x,y, z)e , 〈j,b, z0〉〉 ∈ S∗ ←→ 〈j, dϕ(x,y, z)e〉Emi) .
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Let f : I → I by f(i) = mi. The fact that (M∗, S∗) ² PA(S∗) makes its
evident that for some f ∈ M, f ¹ I = f . Since f can be canonically coded
as a subset of I and SSyI(M∗) = SSyI(M), this shows that there is some
f̃ ∈ M∗ such that

(5) ∀i ∈ I f̃(i) = f(i) = mi.

Thanks to (2), (4), and (5),

(6) ∀i ∈ I (M,a,f , S) ² θ(i), where θ(i) denotes the formula below

∃z0∀j < i 〈dϕ(x,y, z)e , 〈j,a, z0〉〉 ∈ S ←→ ∀j < i
(〈j, dϕ(x,y, z)e〉Ef(i)

)
.

So by overspill applied to θ(i), for some k ∈ M∗\I, there is some c ∈ M∗

such that

(7) For all standard ϕ, (M,a, c) ² ∀j < k (ϕ(j,a, c) ←→ 〈j, ϕ(x,y, z)〉Emk)

This completes the proof of part (b) of the claim since (7) and (3) together
imply that

(M,a, c, i)i∈I ≡ (M∗,b, d, i)i∈I .

¤

We are now ready to establish the following strengthening of Smoryński’s
theorem.

Theorem B. Suppose M is a countable recursively saturated model of PA
and I is a cut of M that is closed under exponentiation. There is a group
embedding

j 7−→ j̃

from Aut(Q) into Aut(M) such that:
(a) Ifix(j̃) = I for every nontrivial j ∈ Aut(Q);
(b) fix (j̃) ∼= M for every fixed point free j ∈ Aut(Q).

Proof: Choose c ∈ M\I and let U be the I-conservative ultrafilter over
P(c) constructed in Theorem 4.3. Use U to build the cofinal elementary
extension NU ,Q of M, where Q is the ordered set of rationals (see Remark
3.8.1). Invoking parts (d), (e), and (f) of Theorem 3.8, there is a group
embedding

j
λ7−→ ĵ

from Aut(Q) into Aut(NU ,Q) such that Ifix(ĵ) = I for every nontrivial
j ∈ Aut(Q), and fix (ĵ) ∼= M for every fixed point free j ∈ Aut(Q). On the
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other hand, by Theorem 2.8 recursive saturation is preserved in the passage
from M to NU ,Q and therefore by Lemmas 4.1 and 4.4, M and NU ,Q are
isomorphic over I via an isomorphism θ : M −→ NU ,Q. This allows us to
define the desired embedding j

α7−→ j̃ by:

α = θ−1 ◦ λ ◦ θ.

This is illustrated by the following commutative diagram:

M
ej=α(j)−→ M

↓ θ ↑ θ−1

NU ,Q
bj=λ(j)−→ NU ,Q

¤
Remark 4.5.
(a) As shown by Kossak [Kos], if N is not a strong cut of a countable recur-
sively saturated model M of PA, then the fixed point set of any automor-
phism of M is isomorphic to M itself. On the other hand, [E-3] confirms a
conjecture of Schmerl by showing that if N is strong in M, then the isomor-
phism type of every elementary substructure of M can be realized by a fixed
point set of M. [E-3] also includes other results regarding automorphisms of
models of PA, including refinements of some of the major results of [KKK].

(b) The existence of a group embedding of Aut(Q) into Aut(M), where M is
a countable recursively saturated model of PA, was first established as corol-
lary of a deep theorem of Schmerl [Sc-2], which states that every countable
recursively saturated model with a definable β-function f (i.e., a function f
coding finite sequences) is generated via f from a set of order indiscernibles
of any prescribed countable order type with no last element. Elementary
considerations show that Aut(M) is also embeddable in Aut(Q). Indeed, as
shown in [KKK, Theorem 4.4] there is an embedding of Aut(M) into Aut(Q)
whose range is dense in Aut(Q) (under its natural topology). It is known,
however, that Aut(Q) � Aut(M), since for example, Aut(Q) is a divisible
group (see [Gl]), but Aut(M) is not (see [KB]). Indeed, as shown in [KKK,
Theorem 4.7] Aut(M) is not isomorphic to the automorphism group of any
countable ℵ0-categorical structure with the small-index property.

(c) Nurkhaidarov [N-1, N-2] has established that for a (fully) saturated
model M of PA of power ℵ1, a cut I of M is of the form Ifix(j) for some non-
trivial j ∈ Aut(M) iff I is closed under exponentiation and the downward
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cofinality of M\I is ℵ1. It is easy to see that if PA has a saturated model
of power ℵα, then the unique saturated linear order of power ℵα, dubbed ηα

by Hausdorff, exists. As shown in [E-6], the method of proof of Theorem B
can be adapted to extend the right-to-left direction of Nurkhaidarov’s result
by showing that there is a group embedding j 7−→ ĵ of Aut(η1) into Aut(M)
such that Ifix(ĵ) = I for every nontrivial j ∈ Aut(η1).

(d) By a corollary of a theorem of Kossak and Kotlarski [KK, Theorem
2.1, Corollary 2.3], the conclusion of Lemma 4.4 continues to hold if the
assumption M ≺cofinal M∗ is replaced with the assumption that I is not
coded from above by N in neither M nor M∗. In light of the fact that the
aforementioned result of Kossak and Kotlarski is framed within the more
general context of extendability of automorphisms, the referee has suggested
that the strategy of the proof of Lemma 4.4 should also yield an extendability
result. The author concurs with the referee’s opinion, but has not verified
the nitty gritty details of the argument.

(e) As shown by Togha and the author [To, Theorem 3], Smoryński’s theorem
has a natural analogue for models of ZFC set theory. The proof of Theorem
B can be adapted to models of ZFC (with the Erdős-Rado partition theorem
taking the place of the finite Ramsey’s theorem) to prove an analogue of
Theorem B for models of ZFC. This is accomplished in a forthcoming
paper [E-4], which also includes a set theoretical analogue of Theorem A of
this paper.

5. A REFINEMENT OF THEOREM A

The author has recently established a refinement of Theorem A by char-
acterizing the subsystem WKL∗0 of second order arithmetic in terms of au-
tomorphisms of models of I∆0. WKL∗0 is a weakening of the well-known
subsystem WKL0 of second order arithmetic in which the Σ0

1-induction
scheme is replaced by I∆0 + Exp. WKL∗0 was introduced by S. Simpson
and R. Smith in [Si-Sm] (see also [Sim, Chapter X.4]) who proved, among
other things, that I∆0 + Exp + BΣ1 is the first order part of WKL∗0 (in
contrast to WKL0, whose first order part is IΣ1). More specifically:

Theorem 5.1. (Simpson-Smith [Si-Sm])
(a) If (M,A) is a model of WKL∗0, then M ² I∆0 + Exp + BΣ1;
(b) Every countable model of I∆0 +Exp+BΣ1 can be expanded to a model
of WKL∗0.
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In light of Theorem 5.1, the following result is a refinement of Theorem A.

Theorem C. [E-5] The following two conditions are equivalent for a count-
able model (M,A) of the language of second order arithmetic:
(a) M = Ifix(j) for some nontrivial automorphism j of a model N of I∆0

and A = SSyM (N)
(b) (M,A) ² WKL∗0.

The direction (a) ⇒ (b) of Theorem C easily follows Lemmas A.0 - A.2 and
known results. The direction (b) ⇒ (a), however, is much harder and uses
the methods of this paper and the following result, which generalizes the
Wilkie-Paris theorem (Theorem 2.4) and improves a key result of Tanaka
[Ta]:

Theorem 5.2. [E-5] Suppose (M,A) is a countable model of WKL∗0. There
is an end extension N of M that satisfies I∆0 such that A = SSyM (N).
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[ER] P. Erdős and R. Rado, A combinatorial theorem, Journal of the
London Mathematical Society, vol. 25 (1950), pp. 249-255.

[Ga] H. Gaifman, Models and types of arithmetic, Annals of Mathe-
matical Logic, vol. 9 (1976), pp. 223-306.

[Gl] A. Glass, Ordered Permutation Groups, London Math. Soc.
Lecture Notes, Cambridge University Press, Cambridge, 1981.

[GRS] R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory,
Wiley-Interscience publications, New York, 1980.
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