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Rational cubic spirals
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Abstract

We consider the problem of finding parametric rational Bézier cubic spirals (planar curves of monotonic curvature) that interpolate end
conditions consisting of positions, tangents and curvatures. Rational cubics give more design flexibility than polynomial cubics for creating
spirals, making them suitable for many applications. The problem is formulated to enable the numerical robustness and efficiency of the solution-
algorithm which is presented and analyzed.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we study numerical methods that aid
in the selection of rational cubics for applications where
monotonic curvature is important. Since spirals are free of local
curvature extrema, spiral design is an interesting mathematical
problem with importance for both physical [8] and aesthetic
applications [2]. Since rational Bézier cubics are common to
all modern design systems [6] and offer more flexibility than
polynomial Bézier cubics [13], it is convenient to describe
rational cubic spirals so that spirals may be used in a variety
of CAD systems. For other work on spirals with prescribed
end conditions see [9] and [11], and the references therein.
Recently, in [5] and [4], numerical techniques were used to
study parametric Bézier cubic spirals. In this paper, that work is
continued by studying parametric rational Bézier cubic spirals,
and a fast, robust algorithm is presented for finding these so that
they interpolate given end conditions. (For the remainder of this
article, a cubic is a parametric polynomial planar cubic, and a
rational cubic is a parametric rational planar cubic.)

First, Section 2 gives background and notation used in this
paper. Then, Section 3 formulates the problem of optimizing
rational cubic spirals by choosing a useful expression for the
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free parameters. Section 4 describes the algorithm used for
finding the optimal rational cubic spiral. Section 5 contains
comments on the numerical results of this investigation.

2. Background and notation on spirals and rational cubics

2.1. Rational cubic curves

If a rational cubic spiral is to exist satisfying given tangential
and curvature end conditions, necessarily, some rational cubic
must exist which satisfies those end conditions. (Naturally, the
question would still remain as to whether or not it is a spiral!)

Rational cubic curves are represented as

f(t) =

3∑
ν=0

wνbν B3
ν (t)

3∑
ν=0

wν B3
ν (t)

, 0 ≤ t ≤ 1,

Bn
i (t) =

(n

i

)
(1 − t)n−i t i , (1)

where bν are the four planar control points, and wν are the four
scalar weights. (If all the weights are set equal, the resulting
curve is a cubic.) A complete discussion of rational Bézier
cubics may be found in [6] and [7]. Since it does not alter
curvature properties (except by a constant scale), throughout
this paper it is assumed that b0 = (0, 0), and b3 = (1, 0).
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Fig. 1. Tangential conditions are specified with φ0 and φ1.

Fig. 2. Circles of curvature at b0 and b3.

This would seem to leave eight degrees of freedom for
design, corresponding to the four weights and two remaining
control points in the plane, b1 and b2 (which are both assumed
to lie in the fourth quadrant so as to allow for non-negative
curvature). However, as explained in [7], two degrees of
freedom are lost, as representation of rational cubics is not
unique. Any two weights may be arbitrarily chosen (not equal
to zero) with no loss of freedom. Therefore, six degrees
of freedom remain for design purposes. To ensure unique
representation, the conditions w1 = 2/3 and w2 = 2/3 are
imposed as was done in [1].

As shown in Fig. 1, the tangent lines for the rational cubic
at t = 0 and t = 1 and the horizontal axes form a triangle
with angles φ0 at the t = 0 corner and φ1 at the t = 1 corner
which are the tangential end conditions for the rational cubic.
Curves whose tangent vectors turn through smaller angles are
more likely to be useful in many applications, so the assumption
is made that 0 < φ0 < π/2, and 0 < φ1 < π/2. Thus, the
intersection of the tangent lines shown in the Fig. 1 exists and
is given by

p = (a, b), where a =
cos φ0 sin φ1

sin(φ0 + φ1)
,

and b = −
sin(φ0) sin(φ1)

sin(φ0 + φ1)
. (2)

The lengths of the lower two sides of the triangle in Fig. 1 are
d0 = sin(φ1)/ sin(φ0 + φ1) (for the side touching the origin),
and d1 = sin(φ0)/ sin(φ0 +φ1) for the side touching (1, 0). The
ratios

f0 =
|b1 − b0|

d0
and f1 =

|b2 − b3|

d1
(3)
are used extensively in this paper so that the four variables
φ0, φ1, f0, and f1 or the four variables a, b, f0, and f1 may
represent the same four degrees of freedom as b1 and b2. Thus,
b1 and b2 are replaced by

b1 = f0p and b2 = (1 − f1)b3 + f1p. (4)

Both f0 and f1 are constrained to be between zero and one.
This (with the angle restrictions imposed above) implies that
the rational cubic is convex and hence free from inflections.

In terms of a, b, f0, f1, w0 and w3, the rational cubic is
given by

x(t) =
w3t3

+ 2(1 − f1(1 − a))(1 − t)t2
+ 2 f0a(1 − t)2t

w3t3 + 2(1 − t)t2 + 2(1 − t)2t + w0(1 − t)3 ,

(5)

and

y(t) =
2 f1b(1 − t)t2

+ 2 f0b(1 − t)2t

w3t3 + 2(1 − t)t2 + 2(1 − t)2t + w0(1 − t)3 . (6)

2.2. Spirals

If a rational cubic spiral is to exist satisfying given tangential
and curvature end conditions, necessarily, some spiral must
exist which satisfies those end conditions. (Naturally, the
question would still remain as to whether or not it is a rational
cubic!) The curvature end conditions are called K0 and K1 just
as the tangential end conditions are called φ0 and φ1. If K0 6= 0,
the circle passing through b0 with radius 1/K0 that is tangent
to the line b0b1 and lies on the same side of this line as does
b3 will be called the circle of curvature at b0, and analogously
for b3.

For the purposes of this work, spirals are defined to be
planar arcs having both non-negative curvature and continuous
non-zero derivative of curvature. Thus, spirals have monotonic
curvature and are free from inflections. The formula for
curvature of a parametric curve is

K (t) =
ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2 , (7)

where x and y are functions of t . This formula shows the
non-linearity of the task of using rational cubics and ensuring
monotonicity of curvature.

Without loss of generality, the spirals studied will be
of increasing curvature for increasing values of t . From
Theorem 3.18 in [10], there exists some convex spiral arc of
increasing curvature interpolating the end conditions b0 =

(0, 0), φ0, K0 and b3 = (1, 0), φ1, K1 with φ0 ∈ (0, π/2), and
φ1 ∈ (0, π/2) with 0 < K0 < K1 if and only if the circle of
curvature at (0, 0) contains the circle of curvature at (1, 0), and
0 < φ0 < φ1 < π/2. (These circles of curvature are shown in
Fig. 2.) The latter condition is equivalent to the constraints that
0.5 < a < 1, and b < 0 in Fig. 1. Using elementary geometry,
the former condition is formulated by imposing a first constraint
that is derived from the tangential contact of the two circles
of curvature and a second constraint ensures that the circle of
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Fig. 3. Region in (K0, K1) space (for fixed φ0 and φ1) where each
(φ0, φ1, K0, K1) quadruple can be interpolated by spirals with K0 max =

2 sin φ0 and K1 min = (1 − cos(φ0 + φ1))/ sin φ0.

curvature at b0 actually contains b3. These two constraints lead
to the inequalities, K0 < 2 sin(φ0) and

K1 >
2(1 − cos(φ0 + φ1)) − 2K0 sin(φ1)

2 sin(φ0) − K0
. (8)

For a spiral, when K0 = 0 the tangent line at (0, 0) must
support the circle of curvature at (1, 0) and this again leads
to Inequality (8). For fixed φ0 and φ1, Inequality (8) describes
a region in (K0, K1) space above a hyperbola where each
(φ0, φ1, K0, K1) quadruple can be interpolated by some spiral,
as shown in Fig. 3.

Since there is no closed form for the roots of the derivative
of the curvature for a rational cubic, a numerical solution is
pursued.

3. Formulating the problem of optimizing a rational cubic
spiral by choosing useful expressions of free parameters

3.1. Parameter selection

In [5] and [4], the problem of designing cubic spirals was
approached by calculating numerous cases numerically. The
tangential end conditions were set, and curvature end conditions
which yielded spirals were extracted and tabulated.

For rational cubics, the situation is more complicated due to
the number of parameters, so analysis begins with the equation
for curvature. The problem is how best to choose the parameters
involved. As explained in Section 2.1, if a and b are prescribed,
there are four remaining degrees of freedom, f0, f1, w0, and w3
with which to control K0 and K1.

The relations between these variables are derived from the
formulas for curvature and are given by

K0 =
−w0b(1 − f1)

f 2
0 (a2 + b2)3/2

, (9)

and

K1 =
−w3b(1 − f0)

f 2
1 ((1 − a)2 + b2)3/2

. (10)
If tangential and curvature end conditions are prescribed,
a, b, K0, and K1 are known, so for each (a, b, K0, K1)

quadruple, values of f0, f1, w0, and w3 are sought so that the
above equations are satisfied, and the resulting rational cubic is
a spiral. Since Eqs. (9) and (10) can be solved for any two of
their variables in terms of the others, there are two degrees of
freedom remaining after the curvature constraints are imposed.
The task is thus reduced to selecting the pair of the remaining
two degrees of freedom to produce a spiral if possible. (This
is faster than searching over a 4-D space while checking the
constraints.)

It is advantageous to solve Eqs. (9) and (10) for f1 and w3
with independent variables f0 and w0. This gives

f1 =
w0b + K0 f 2

0 (a2
+ b2)

3
2

w0b
, (11)

and

w3 =
−K1 f 2

1 ((a − 1)2
+ b2)

3
2

(1 − f0)b
, (12)

where the expression for f1 may be substituted into the
expression for w3 directly, or, when this is done numerically,
Eq. (11) may be simply calculated before Eq. (12).

At first glance, it may seem that it would be easier to simply
leave two of the weights (either w0 and w3 or w1 and w2) as
the degrees of freedom. However, after some trial and error, we
found that the above form leads to greater flexibility, simpler
formulations and numerical stability. The reasons it is better to
leave f0 and w0 (rather than two weights) as the last two free
variables are as follows:

• The formulas are quite simple.
• Since the curvature will be increasing and positive, there is

no need to maintain symmetry between the use of f0, w0 and
f1, w3.

• When the curvature K0 is set to zero in Eq. (9), the
consequence should be that f1 = 1 which is exactly
what happens in Eq. (11). However, some of the other
formulations force w0 to become zero, and this is not useful
from a numerical standpoint or a design standpoint.

• Since the curvature will be increasing and positive, the
curvature at t = 1 is never zero and hence there is no need
to make f0 = 1. So the denominator in Eq. (12) will not
be zero for b < 0. A small denominator in this expression
would imply that w3 is large, but since it is important for the
numerical stability of the curve representation itself to keep
w3 bounded, this restriction on w3 imposes a bound on the
denominator of Eq. (12).

• In a similar manner, the condition that the denominator in
Eq. (11) not be small is ensured by making certain that
neither |b| nor w0 are small. This, again, is consistent with
numerical stability of the curve itself.

The constraint that 0 ≤ f1 ≤ 1 leads to a lower bound on w0
which is given by

w0 min =
K0 f 2

0 (a2
+ b2)3/2

−b
. (13)
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Table 1
Simple cases for finding Mexact (without the f0 f1(1 − f0) factor) for certain piecewise linear curvatures

K (0) K (0.5) K (1) Total Variation K1 − K0 Mexact

A spiral 0 0.5 0.6 0.6 0.6 0.2
Boundary case 0 0.5 0.5 0.5 0.5 0
Not a spiral 0 0.5 0.4 0.6 0.4 −0.2
There is no known theoretical upper bound on w0, but in
practice, for the majority of cases we have computed, if
there are rational cubic spirals for a given (φ0, φ1, K0, K1)

quadruple, there will also be some with w0 less than 6 (usually
closer to 1 or 2). In no cases did we observe w0 over 9, but rare
instances may exist. More specifically, the “optimal” rational
cubic spiral will have a low value in this range for its w0. (The
measure for “optimal” is discussed in Section 3.2.) Thus, a
reasonable bounded region of ( f0, w0) space can be formed to
numerically search for a rational cubic spiral.

3.2. A measure of the quality of the spiral

To select f0 and w0, a measure, Mexact, is defined to describe
how close a curve is to being a spiral. A numerical optimization
is done on Mexact, so the measure must have its largest posi-
tive values for numerically stable spirals. From an artistic stand-
point, there are various attributes that a designer might wish to
emphasize (such as maximum rotational symmetry or minimiz-
ing total variation in some higher order derivative of K — with
the cubic being parameterized however desired, possibly by
arclength) and any of these goals would be compatible with the
methods described here. Those attributes could be worked into
a new measure, so long as the desired attributes did not cause
numerical instabilities. For the measure used in this work, spi-
rals with larger minimum K ′ and smaller maximum K ′ were
preferred by the algorithm. This is discussed in Section 5.2.4.

The measure is a function mapping rational Bézier curves
to the real numbers and is defined so that negative values
result when the curve is not a spiral and positive values result
when the curve is a spiral. It works well to use different
functions depending upon whether or not the curve is a spiral,
because this improves how the measure drives the optimization
algorithm. Again, since the measure is maximized numerically,
it should have its largest positive values for numerically stable
spirals.

Given a rational cubic, the first step in computing the
measure is to compute the curvature, K (t), from Eq. (7), over
0 ≤ t ≤ 1 as in the previous section. Then, the measure Mexact
is given by

Mexact(a, b, K0, K1, f0, w0)

= Mexact( f0, w0)

=


f0 f1(1 − f0) min(K ′(t)) if K ′(t) > 0

for all 0 ≤ t ≤ 1

K1 − K0 −

∫ 1

0
|K ′(t)|dt otherwise.

(14)

Observe that the measure is positive in the first case and the
factors f0, f1 and (1 − f0) are included. Numerical experience
has shown that these are useful in driving the algorithm to
choose a reasonable spiral from a numerical standpoint.

The measure is non-positive in the second case, where it
measures the discrepancy between the total variation of the
curvature and the minimum possible value of the total variation,
K1 minus K0. The neutral case occurs when K ′(t) ≥ 0 and
K ′(t) = 0 for at least one t in [0, 1], hence min(K ′(t)) =

0 = K1 − K0 −
∫ 1

0 |K ′(t)|dt . The measure Mexact( f0, w0)

is to be maximized for each (a, b, K0, K1) quadruple. Since
Mexact cannot be directly computed, it must be approximated,
as described in Section 4.2.

3.3. Short demonstrations for measure Mexact

In Table 1, three simple examples are shown to demonstrate
the computation of the measure Mexact in the event that the
curvature is piecewise linear with two linear segments joining
at t = 1/2. These examples are shown just to illustrate
the measure as the curvature for rational cubics is obviously
not piecewise linear. Further, we do not include the factor of
f0 f1(1 − f0).

For each example, the curvature is found at t = 0, t = 0.5,
and t = 1, so the step-size is 0.5. The total variation is found
based on those partition points, and K1 − K0 is also found.
In the first case, the total variation is equal to K1 − K0, and the
measure M is the smallest 1K/1t which, of course, is positive.
In the last case, the total variation exceeds K1−K0, and the total
variation is subtracted from K1−K0, giving a negative value for
Mexact. In the middle case, where Mexact is zero, the calculation
for both the above cases are zero and this occurs precisely when
there are consecutive partition points with the same curvature
value but no consecutive partition points indicate a decreasing
curvature.

4. An algorithm for finding optimal rational cubic spirals

This section describes the algorithm for finding optimal
rational cubic spirals. As before, the endpoints are fixed at
b0 = (0, 0) and b3 = (1, 0), and w1 = w2 = 2/3. The
algorithm takes as input the values of φ0, φ1, K0, and K1 as
well as a positive integer N (used to set a mesh size) which
will be used in creating M , an approximation to the measure
Mexact. The output gives f0 and w0 where M is found to be
greatest. The values of f1 and w3 are computed from f0 and w0
by Eqs. (11) and (12). This is sufficient information to construct
the rational Bézier using Eqs. (1), (4) and (2).

The algorithm has three subroutines, one to calculate
curvature, one for determining M , and one for optimizing M .
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4.1. Calculating the curvature

For rational cubics, the calculation of curvature is both more
numerically stable and more efficient than the computation of
its derivative. Thus, for values of t other than zero and one, the
approximation of the measure in the next subsection is based
mostly on curvature values.

The subroutine for calculating the curvature takes as inputs
f0, w0, K0, K1, a and b as well as t . These uniquely define a
rational cubic using Eqs. (5), (6), (11) and (12) and provide the
point at which the curvature is to be calculated. The routine
returns the curvature at t using Eq. (7). The calculations for the
first and second derivatives are optimized with automatically
generated code produced by MapleTM [12] from the symbolic
derivatives.

Due to possible extrema hiding between mesh points
(discussed in Section 4.2, the derivatives of curvature at the two
endpoints (t = 0 and t = 1) are found. While the evaluation
of the derivative of the curvature for arbitrary values of t is
computationally unstable and time-consuming, at t = 1 and
t = 0 it is simple, making these two additional computations
reasonably fast. This subroutine finds K ′(0) and K ′(1) by
combining formulas for the first, second and third derivatives
of the rational cubic spiral at t = 0 and t = 1 together with the
derivative of the formula given in Eq. (7).

4.2. Calculating M and optimizing spirals

This subroutine approximates the measure Mexact defined in
Eq. (14) using the inputs f0, w0, K0, K1, a, b and a sample size
N . We discuss two approximations, a simple approximation
called M̄ and then an improved approximation called M . The
approximations are based on a partition of [0, 1] given by

0 = t0 < t1 < t2, · · · < tn = 1

where n will be based on the input N and will be discussed
further below. The curvature of the rational cubic obtained from
f0, w0, K0, K1, a, and b is calculated at a set of t values in
[0, 1] to obtain a list of values, κi = K (ti ) where i = 0, . . . , n.
Once the κi values are computed, the routine computes 1κi =

κi − κi−1 and 1ti = ti − ti−1 for i = 1, . . . , n. The measure
is then approximated by checking to see if all the 1κi > 0 in
which case

M̄( f0, w0) = f0 f1(1 − f0) min
1≤i≤n

(
1κi

1ti

)
(15)

which approximates the minimum slope. If at least one 1κi is
negative, the routine computes an approximation of the second
case in Eq. (14). This is done numerically using a Riemann sum
for the integral, where the derivative of the curvature to K is
approximated by 1κi

1ti
.

M̄( f0, w0) = K1 − K0 −

n∑
i=1

∣∣∣∣1κi

1ti

∣∣∣∣1ti

= K1 − K0 −

n∑
i=1

|1κi | . (16)
Fig. 4. A spike in the curvature which can hide between mesh points.

The obvious way to choose the partition of [0, 1] is to do so
uniformly and set ti = i/N (and n = N ). However, experience
shows that regardless of how large N is chosen, local maxima
and minima can hide between the mesh points. Luckily, this
usually occurs only between the last two mesh points as a
local maximum, causing a very tall “spike” to appear in the
graph of the curvature (as in Figs. 4 and 5). (Less common are
local minima occurring between the first two mesh points.) This
spiking phenomenon is discussed further in Section 5.

We discuss two methods by which the approximated
measure can be designed to account for the spikes. The first
method to deal with the spikes is to include extra values near 0
and 1 in the list of t values at which the curvature is computed.
Thus the interval [0, 1] would first be partitioned into N equal
subintervals and j additional t values would be included in
the first and last subintervals resulting in a partition of size
n = N + j . If this method is used in isolation, it is best to
cluster these added points close to 0 and 1.

The second method to deal with the spikes is to consider
the derivatives of curvature at t = 0 and t = 1 as part of
the measure. In this case, the t values are chosen by creating a
uniform partition of [0, 1] of size 1/N and then to also compute
the derivatives of the curvature at t = 0 and t = 1 (K ′(0) and
K ′(1).) The measure is then approximated by checking to see
if 1κi > 0, for i = 1 . . . N and if K ′(0) > 0 and K ′(1) > 0 in
which case

M( f0, w0) = f0 f1(1 − f0)

× min
(

K ′(0),
1κ1

1t1
,
1κ2

1t2
, . . . ,

1κN

1tN
, K ′(1)

)
(17)

which approximates the minimum slope. If at least one 1κi is
negative or if K ′(1) < 0 or K ′(0) < 0, the routine computes
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Fig. 5. A rare local minimum effect is hidden near t = 1.
M( f0, w0) = K1 − K0 −

(
N∑

i=1

|1κi |

)
+ min

(
0, K ′(0)

)
+ min

(
0, K ′(1)

)
(18)

which is an approximation of the second case in Eq. (14) with
a negative penalty if K ′(0) < 0 or K ′(1) < 0.

In practice, we use the measure M along with N additional
points in each of the first and last subintervals of a uniform par-
tition of size N , typically with N = 15. The use of K ′(0) and
K ′(1) does well in assuring that the curve that gives rise to the
spike in Fig. 4 is not labeled as a spiral, while the added points
near t = 1 and t = 0 work better for the double spike in Fig. 5.

4.3. Optimizing M

As inputs, this subroutine takes values for a, b, K0, and K1
and a starting point, ( f 0

0 , w0
0) in the search space along with a

grid size m and a tolerance ε. The outputs are f0 and w0 values
where the measure is found to be greatest.

In the routine, an adaptive optimization procedure is used
which begins at a starting value, ( f 0

0 , w0
0), searching an m × m

grid, with a total starting width of one and height of 2w0
0 . The

value of M is computed for each point in the grid. Then, at
each iteration, the m × m grid is recentered on the new point
where the optimal measure occurs, and the width and height
are halved. The routine continues until the distances between
the points in the m × m grid are less than a preset tolerance ε

for both f0 and w0.
Thus, with the refinement allowing the search space to move

upward, the total region searched is 0 ≤ f0 ≤ 1 and up to
0 ≤ w0 ≤ 3w0

0 . As discussed in Section 3.1, no spirals that
optimize our measure have been found for w0 ≥ 9, so we
typically choose w0

0 = 3. We chose to start at lower values
of w0 as that is where the majority of spirals are found.

For each ( f0, w0) point under consideration, the inequality
w0 > w0 min where w0 min is given by Eq. (13) is checked.
If the inequality fails, the point is rejected from future
consideration for the optimal measure. This method works
better than basing the lower end of the search region on the
formula for w0 min and using a non-rectangular grid because
w0 min can get large for |b| small and f0 near 1 which distorts
the search grid and produces unfavorable results.

To further insure that a spiral is produced, when the
optimization routine completes, the measure routine is run for
the final curve but this time with a larger input value of N
(usually 200). This includes many more curvature samples and
occasionally rejects curves that would otherwise be labeled as
spirals. We found that it is usual that in these cases, no rational
cubic spiral exists. So greater speed is achieved by using a
relatively small value of N (around 15) for the execution of the
algorithm and then a larger value of N only at the completion
of the algorithm for a final check.

For the bulk of the test cases we ran, we used a value of
m = 12, set the tolerance ε = 0.01, f 0

0 = 0.5, and as
mentioned above, w0

0 = 3. This resulted in an algorithm that
runs in under a hundredth of a second for one case and is
robust enough to handle the vast majority of cases. Thus, a more
sophisticated optimization routine is not needed.

5. Comments on numerical results

5.1. Discretization and stability issues

We now discuss further the spiking phenomenon we
described in Section 4.2. In Fig. 4, a sequence of curvatures
for values of t chosen uniformly in the interval [0, 1] will be
increasing for even a fairly fine uniform mesh. Naturally, the
interval may be increasingly subdivided, but there may still be
spikes in the curvature which may be aliased and hence not be
visible. In fact, the search algorithm seems to encourage this to
happen. This happens almost entirely near t = 1 in the interval.
Occasionally, a slight curvature minimum occurs near t = 0.

Two conditions often lead to this spiking phenomenon: a
small value for φ0 used in conjunction with a large value for
φ1, and a small K0 value used in conjunction with a relatively
large K1 value. In Fig. 4, both of these conditions hold, leading
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Fig. 6. Two examples of crescent-like regions containing all spirals satisfying tangential and curvature constraints.
to this spiking phenomenon. It follows from the constraint that
K0 < 2 sin(φ0) and Inequality (8) that only small K0 and large
K1 pairs are potential spirals. (This is because since φ0 is small
the denominator of the right hand side of Inequality (8) is very
small, but the numerator is not near zero because K0 is also
small and the 1 − cos(φ0 + φ1) term dominates for large φ1.) It
is easy to visualize why this is always the case for small φ0 and
large φ1. The rational cubic begins nearly flat and is confined to
a thin triangle, but it must “turn” suddenly in order to match the
tangent condition at t = 1. Fig. 6 shows a typical constraining
region for two sets of φ0, φ1, K0, K1 sets.

The bottom boundary of the crescent-shaped region in Fig. 6
is a bi-arc. The left arc is from the required circle of curvature
(with radius 1

K0
) at (0,0). Its right arc is from a circle satisfying

the following two conditions. First, its tangent at (1,0) makes an
angle of φ1 with the horizontal axis, and, second, it must touch
tangentially that aforementioned circle of curvature originating
at (0,0). The upper boundary is also a bi-arc. Its right arc is from
the required circle of curvature (with radius 1

K1
) at (1,0). The

left arc is from a circle satisfying the conditions that its tangent
at (0,0) makes an angle of φ0 with the horizontal axis, and that
it touches tangentially the aforementioned circle of curvature
originating at (1,0).

A much less common phenomenon is to have both a local
maximum and a local minimum close to t = 1. This is one
way a non-monotonic curvature can hide numerically, even with
the testing of the derivative of the curvature at t = 1. Fig. 5
demonstrates this. Note that for this particular example, the
curve itself would be very close to being a spiral, as reflected
by measure M having an extremely small magnitude. This
example indicates the need for more points near t = 1 along
with the derivative of curvature.

To see the impact of the value of N on the algorithm, we used
the measure M as indicated in Section 4.2 and tried 156 000 test
cases. With a value of N = 15, the algorithm found 61 293
spirals, whereas with N = 20, the algorithm found 61 931
spirals, for a very slight increase of around 1%.

We found the measure M outperformed all other approxi-
mations we tried. For example, we considered higher order in-
tegration techniques (e.g. Simpson’s rule) for approximating
the integral in Mexact. Since the vast majority of these tech-
niques have positive weights, they can do no better in detecting
non-monotonic curvature than the measure M . As discussed in
Section 4.1, the exact derivative of curvature is not computed
but instead we use approximations to the derivative. Thus the
Fig. 7. Diagnostic plots in curvature space for φ0 = 0.1 and φ1 = 1.5.

higher order integration techniques do not actually result in a
higher order approximation of the integral and in our experi-
ments performed no better than the Riemann sum. We also ex-
perimented with an adaptive integration technique to approxi-
mate Mexact that tried to to add more points to interior subinter-
vals. This also worked no better than the approximation M . This
is probably due to the fact that, as discussed in Section 4.2, the
adaptation to the end intervals has already been made in com-
puting M .

The measure M generally behaves well with respect to small
changes in f0 and w0. However, when the magnitude of M is
large and M is negative, radical changes in M can occur for tiny
perturbations in f0 and w0. But the cases of greatest interest
are when the magnitude of M is small and for those cases,
M behaves quite reasonably. For example, numerical results
indicate that when −0.1 < M < 0, a perturbation of ±.001
in f0 and/or w0 never produces a change of greater than 1 in
M , and furthermore only results in a change in M greater than
0.1 in 176 of 498 101 sample cases. When the larger changes in
M do occur they are usually not near the optimal value in the
search space, making the algorithm quite well behaved in the
vast majority of cases.
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Fig. 8. Diagnostic plots in curvature space for φ0 = 0.3 and φ1 = 0.7.

Fig. 9. Diagnostic plots in curvature space for φ0 = 0.7 and φ1 = 1.4.

5.2. Cubic diagnostic tools aiding rational cubic analysis

It is of interest to compare the rational cubic spiral findings
to cubic spiral findings.

Figs. 7–10 are explained over the next few subsections.
In these figures, cubic spirals and rational cubic spirals
are compared by illustrating the (K0, K1) coordinates that
corresponds to the spiral. The analysis of cubic spirals is fully
described in [4]. Because every cubic spiral is a rational cubic
spiral, the set of (K0, K1) values where a rational cubic spiral
is found should be a superset of those where a cubic spiral
exists. Furthermore, the cubic spiral analysis tools shed light
on why the rational cubic spiral solutions may be exhibiting
certain attributes.
Fig. 10. Diagnostic plots in curvature space for φ0 = 0.9 and φ1 = 1.4.

5.2.1. Numerical comparison of cubics with rational cubics
For the over 156 000 cases, the algorithm (with N = 15)

found 61 293 rational cubic spirals, and in 40 976 of these cases,
there exists no corresponding cubic spiral. This is a reasonable
measure of the greater flexibility of rational cubic spirals over
cubic spirals. Some of the test points are shown as squares,
diamonds, and crosses in Figs. 7–10.

The points in these four figures are either crosses (indicating
that neither a cubic spiral nor a rational cubic spiral could
be found for the (K0, K1) pair) or diamonds (indicating that
the algorithm found rational cubic spirals but no cubic spiral
exists), or squares (indicating the presence of a cubic spiral,
which is, of course, also a rational cubic spiral, and usually
many additional rational cubic spirals). For all but 8 cases of
the over 156 000 of φ0, φ1, K0, K1 test values, the algorithm for
the rational cubic spirals succeeded in producing a spiral when a
cubic spiral existed. The exceptions are due to the fact that the
algorithm for finding cubic spirals is largely analytical and is
usually successful in finding a solution if it exists, whereas the
algorithm for finding rational cubic spirals is entirely numerical
and much more subject to discretization errors. (To recover
those cases the grid size could be refined.) A hybrid algorithm
may be considered that started with the cubic solutions and
worked forward, but in our opinion it would not be worth the
effort or computational expense. (Using this technique, it would
obviously be possible to fix only cases where an analogous
cubic exists. There are surely similar missed rational cubic
spirals where cubic spirals do not exist.)

5.2.2. Necessary conditions for cubic spirals
The dark hyperbolas shown in Figs. 7–10 provide a lower

boundary of the region in which any spirals may be located, as
indicated by Inequality (8) and shown in Fig. 3. The horizontal
and vertical lines split (K0, K1) space into four regions, of
which, the upper right and lower left contain cubics (possibly



D.A. Dietz et al. / Computer-Aided Design 40 (2008) 3–12 11
Fig. 11. Regions in (K0, K1) space with numbers showing multiplicity of
cubics [3].

spirals) for a given (K0, K1) pair. The remaining curve (which
has a cusp in it and limits towards the horizontal and vertical
lines) cuts off a small region in which cubic spirals might also
exist, because there are actually multiple cubics in that region
for each (K0, K1) pair, as shown in Fig. 11. For example, for the
conditions φ0 = 0.3, φ1 = 0.7, K0 = 0.3, and K1 = 3.2, there
are three cubics. However, for φ0 = 0.3, φ1 = 0.7, K0 = 0.2,
and K1 = 4, there are no cubics. (Comparison of the diagrams
in Figs. 11 and 8 confirm this.) The remaining areas (upper
left and lower right) will not result in cubics. For a further
discussion see [3].

5.2.3. Insight into when the curvature spikes at the end
In the cases when both a cubic spiral and a rational cubic

spiral exist and when the rational cubic spiral has a very steep
curvature near t = 1 it is usually the case that the cubic spiral
also has a very steep curvature near t = 1. In fact, upon
studying this cubic, it usually also has a zero derivative at some
value of t just slightly greater than 1. thus it has a spike in its
curvature plot, but the top of the spike lies outside of [0, 1].

In many of these cases, the cubic spirals are such that if the
end curvatures are perturbed, the result is a curvature pair for
which no cubic spiral exists and a spike occurs in the curvature
plot near t = 1. This happens not only for small perturbations
but also for many larger perturbations of the end curvatures as
well. Thus, there is a large number of curvature pairs that occur
in the search gird for which spikes occur near t = 1 in the
cubics. To the extent the same phenomenon exists in rational
cubics, the adaptation of the measure to append points near
t = 1 is essential for the proper execution of the algorithm.
To a lesser extent, a similar phenomenon occurs near t = 0.

5.2.4. Optimization of cubics versus rational cubics
It may be of interest to compare the values of the measure M

for cubic spirals to those of rational cubic spirals in the cases
that both exist for a given φ0, φ1, K0, K1. Out of the 156 000
test cases ran, we found 20 309 cases where both cubic spirals
and rational cubic spirals existed. In 20 255 of these cases, the
rational cubic spiral had a higher value of M , by a relative
increase of about 5.67 on average. This is due to primarily to
the fact the minimum slope of the curvature is larger. The other
54 cases were due to the fact that the search algorithm does not
start with the cubic. But the resulting relative increase in the
measure of the cubics over the rational cubics in this case was
only about 3.38 on average.

We also experimented on this set of 20 309 spirals and
computed an approximation to the maximum slope of the
curvature. This is an alternate way of measuring the quality of a
spiral, the smaller the slope, the better the spiral. Our algorithm
did not try to optimize this. But it was found that for 13 507
cases the maximum approximate slope of the cubic was higher
(worse) than the maximum approximate slope of the rational
cubic by a relative increase on average of of about 0.42. For
the other 6802 cases, the slope of the rational cubic was higher
(worse) than that of the cubic by a relative increase on average
of about 0.18. These are very slight differences in both cases
indicating that the optimization of M does quite well in the
majority of cases in this regard.

The measure M and the maximum slope of curvature are just
two of many possible measures that might be used to judge the
quality of a curve, but both are general purpose and appropriate
for spirals. It should be noted that once a spiral has been found,
it lies in the bounding crescent, and these bounding crescents
are frequently even slimmer than the ones shown in Fig. 6.
Thus, in the majority of cases, the slight differences in measures
discussed in this section do not actually result in a perceptible
visual improvement in the spiral.

5.3. Interesting spirals

The (K0, K1) pairs for which K0 is near zero and K1 is
orders of magnitude larger are not as likely to be of interest in
design settings, because they essentially mimic long lines with
small hooks attached. Sometimes these hooks are too small to
even be visible. While it seems easier to produce this kind of
curve with rational spirals than with cubic spirals, this case is
much more easily designed by using other shapes or piecewise
curves. As such, it’s not useful to investigate them for non-
theoretical purposes.

Of more interest are the (K0, K1) pairs for which K0 is
somewhat larger than zero and K1 is roughly of the same order
of magnitude as K0. These are the spirals that come closest
to equality in Inequality (8). For example, see Fig. 10, which
shows both where cubic spirals exist and where rational cubic
spirals exist in (K0, K1) space for φ0 = 0.9 and φ1 = 1.4. Note
that the squares do not get as close to the bounding hyperbola
curve as the diamonds. This illustrates a typical case where
rational cubics offer greater flexibility and utility for design
applications.

6. Conclusions

The algorithm presented is quite fast, easily running 100
cases in under a second on an average laptop computer. Thus,
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it is quite feasible to design a fast, robust algorithm to find
rational cubic spirals numerically. However, proper care must
be taken to use an appropriate measure for optimization and
to apply appropriate constraints so that the algorithm is not
too susceptible to numerical errors arising from various typical
curvature behaviors.
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