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Abstract   
Follow The Sun (FTS) has interesting appeal – hand-off work at the end of every day from one 
site to the next, many time zones away, in order to speed up product development.  While the 
potential impact on “time-to-market” can be profound, at least conceptually, FTS has enjoyed 
very few documented industry successes because it is acknowledged to be extremely difficult to 
implement. In order to address this “FTS challenge” we provide here a conceptual foundation 
and formal definition of FTS.  We then analyze the conditions under which FTS can be 
successful in reducing duration in software development.  We show that handoff efficiency is 
paramount to successful FTS practices and that duration can be reduced only when lower within-
site coordination and improved personal productivity outweigh the corresponding increase in 
cross-site coordination.  We also develop 12 research propositions based on fundamental issues 
surrounding FTS, such as: calendar efficiency, development method, product architecture and 
hand-off efficiency, within-site coordination, cross-site coordination, and personal productivity. 
We combine the conceptual analysis with a description of our FTS exploratory comparative field 
studies and draw out their key findings and learning. The main implication of this article is that 
understanding calendar efficiency, hand-off efficiency, within-site coordination and cross-site 
coordination is necessary to evaluation – if FTS is to be successful in reducing software 
development duration. 
 
 
  
Keywords: duration reduction; calendar efficiency; time to market; handoff efficiency; global 
coordination; 24-hour development; round the clock development.  
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Introduction  
Follow The Sun (FTS from here on) is a rather intuitive idea: hand-off work at the end of 

every day from one site to the next site many time zones away (for example, USA to India), so 
that the work can be advanced while one’s team rests for the night. The potential impact can be 
profound, both theoretically and for practice.  Theoretically, n sites can increase their 
development speed by organizing the work tasks to work sequentially on a daily basis by 
optimizing coordination costs.   For practice, FTS is appealing because of the potential to reduce 
“time-to-market.”  

Despite such temptations, FTS has had few documented industry success cases. As was 
acknowledged more than a decade ago, “Follow the sun with daily hand-offs is very difficult…” 
[7].  This difficulty has not changed noticeably in the ensuing years despite improved 
technologies and methodologies [3]. In this article we investigate this “FTS challenge” – the gap 
between promise and reality – with a comprehensive conceptual examination.     

FTS (also called: 24-hour development and round-the-clock development) is one form of 
global software development [7] with all its corresponding challenges of coordination barriers, 
cultural differences, and communication difficulties [14]. However, we contend that FTS is 
uniquely focused on speed improvement in that the project team configuration is designed to 
reduce cycle-time (also known as time-to-market reduction or duration reduction).   

We position our research as a conceptual foundation to study FTS for the express purpose 
of accelerating software work in order to reduce time-to-market. FTS requires formidable daily 
hand-off coordination – a time and effort cost – which is very much at the heart of its difficulty. 
However, creative practices may reduce coordination costs, which leads to our research question: 
can FTS be more effective in improving development speed – and if so, in which ways? 

Our research question can be further decomposed into more specific unresolved FTS 
issues, which we begin to address in this article:  (1) FTS definition – the term is used 
inconsistently. In order to make progress in this research area it is important to adopt and employ 
a consistent definition so that we can adequately compare and contrast findings; (2) Development 
speed – we dissect its theoretical basis and introduce a related concept of calendar efficiency; (3) 
Development method – the particular development method employed is likely to drive FTS 
success; (4) Product architecture – the architecture chosen will likely drive FTS success 
(software products can be partitioned into subsystems, modules, features, etc.); and (5) 
Coordination costs – the highly-interdependent work that FTS imposes has different 
coordination costs relative to both co-located and conventional global work configurations.   

Our goal in this article is to begin to address these issues and provide a conceptual 
framework to guide further studies of FTS. In the first section we provide a theoretical 
foundation for the study of FTS. We formally define FTS and then elaborate on related issues, 
particularly development speed – the primary driver for FTS. Throughout our discussion we 
formulate propositions. Next, we examine the structure, methodology and architecture of FTS 
work and then use a field study to compare FTS development speed against a co-located team. 
Finally, we present a conceptual analytical discussion and introduce three key variables of FTS 
analysis.   

 
Background on Time-to-market and FTS 

In order to understand FTS one needs first to understand development speed and its 
associated concept of time-to-market.  Time-to-market is the length of time it takes from product 
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conception until the product is available for use or sale [40] (Figure 1). Time-to-market is most 
important in industries where products become outmoded quickly, such as mobile telephone 
handsets and their corresponding software. Time-to-market is also important for strategic 
information systems such as competitive e-commerce systems or innovative supply chain 
management systems.  There are other managerial reasons for duration reduction: avoiding 
contract creep, schedule slippages, and budget overruns. 
 

 
Figure 1. Timeline of time-to-market, measured from inception to use/sale 

 
A desire for rapid development – a sense of urgency – is shared by most firms and 

projects in a competitive marketplace, but most efforts to reduce project duration are reactive, 
utilizing overtime hours or work speed-up (e.g., work faster, skip steps, set aggressive 
deadlines).  All these reactive efforts have real costs due to burnout and fatigue [33].  Adding 
personnel for speed-up is of little interest in software because of the wisdom gained long ago 
from the seminal Brooks' Law [4] – "adding manpower to a late software project makes it later." 
Rather than reactive tactics, proper time-to-market reduction requires a deliberate design around 
the objective of speed that is based on high awareness of achieving this goal within the 
development team [33, 37, 40].   

The first well-documented global software team specifically set up to take advantage of 
FTS was at IBM in the mid-1990s [7]. This team was set up from inception to employ FTS, 
spread out across 5 sites around the globe. However, FTS was unsuccessful.  It was uncommon 
to move the software artifacts daily as had been hoped.  Finally, the decision was made that the 
effort of frequent daily hand-offs (tight coupling) was to be abandoned and collaboration 
between the sites was reduced to the loose coupling that is common in the vast majority of 
today’s global collaborations.  

The first researchers to examine FTS were Hawryszkiewycz, Gorton, and colleagues. 
They conducted a series of small controlled experiments in the mid 1990s [19] but did not 
continue their line of inquiry beyond this.  Cameron [6] claimed some limited FTS success at the 
global American firm EDS (now HP), but did not continue his efforts either. Gupta has also 
written extensively about the promise of FTS or, more specifically, the 24-hour knowledge 
factory [20]. 

During the last decade some have claimed successful FTS practices but, on closer 
inspection, while these projects were indeed dispersed, they did not practice the daily hand-offs 
of FTS [e.g., 43].  We note that this is consistent with the authors’ experience in industry: the 
FTS term is used loosely and upon closer inspection there is no – or very little – FTS. For 
example, contrary to myth, Indian offshore firms do little FTS [8]. 

Define Design Make Distribute

Time-to-market



Page 4 of 21 

In summary, in the ensuing decade since the much-publicized IBM FTS project, there has 
been little progress to address and understand the FTS challenge, either in the research literature 
or in practice.  With limited progress in empirical field research, the FTS research literature has 
recently moved in another trajectory: mathematical modeling [28, 39, 41, 42].  We will return to 
these models later in this article. 
  As illustrated in Figure 2a and 2b, globally distributed configurations involve 
decomposing tasks and allocating them to multiple sites in a way that minimizes dependencies 
across sites [7, 22]: parallel work1 or development phase (we note that there are other 
considerations besides minimizing dependencies, such as location of expertise). For our own 
shorthand notation we will refer to these two configurations as "conventional global 
configurations."  The key difference between FTS (figure 2c) and conventional global 
configurations is that FTS focuses on daily hand-offs from site to site, whereas the opposite is 
true for conventional global configurations in which an attempt is made to reduce 
interdependencies and hand-offs as much as possible. 
 

 
 
 
 

Site 1 
Site 2 
Site 3 

 

 
 
 
 

(a) Parallel 

 

 
 

(b) Development Phase 

 

 
 

(c) Follow The Sun 
Figure 2.  FTS compared to other globally distributed configurations.  We refer to parallel- 

and phase-based as “conventional global configurations.” 
 

Defining and Disambiguating “Follow the Sun” 
Based on the foregoing discussion, in this section we propose a formal definition of FTS. 

A definition is critical since progress in FTS research requires that researchers use the same 
frame of reference to compare results. Before we propose our definition, we posit that FTS 
requires satisfying all four of these criteria:  
1. The main objective of FTS is duration reduction. This criterion distinguishes FTS from other 

popular global software development configurations and practices (e.g., offshoring is often 
conducted for cost objectives, parallel development is a more manageable configuration). 
FTS is clearly difficult and offers no other advantages over other configurations besides 
speed. 

2. Production sites are far apart in time zones. This criterion differentiates FTS from other 
production acceleration tactics.  

                                                 
1 In the case of parallel work it is important to emphasize that coordination costs are usually quite high during the 
integration phase.  
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3. At any point in time there is only one site that owns the product. This criterion differentiates 
FTS from conventional global configurations in which various sites may own different parts 
of the product.  

4. Hand-offs are conducted daily at the end of each shift. 2 This criterion differentiates FTS 
from conventional global configurations which minimize dependencies and hand-offs 
between sites.    

Building on the above criteria, we define FTS as:  
 “A round-the-clock work rotation method aimed at reducing project duration, in which 
the knowledge product is owned and advanced by a production site and is then handed-
off at the end of each work day to the next production site several time-zones west.”  

Our definition is flexible in a number of respects. First, FTS applies to any type of 
knowledge work in which a knowledge product is being developed (not just software 
development). For example, Gupta [20, 21] describes other knowledge-based applications that 
claim to do FTS—at General Motors and at Office Tiger. Second, the definition is consistent 
with broader definitions of global collaborative software development across global production 
sites [26]. Third, it allows us to expand our thinking of how FTS work is organized. For 
example, we usually envision FTS with two or three sites, but assuming 6 hours per site of 
intensive software development per day (“task time”), it is theoretically possible to manage FTS 
with even 4 sites spread out across time zones of the globe and perhaps even more.  Fourth, our 
definition allows for work time overlap time between sites, if desired, since many time-separated 
teams plan for such overlap, at the beginning/end of a shift, to allow for synchronous 
coordination.  Fifth, in cases where some work days involve parallel work (and there is no FTS 
hand-off), then these cases could be labeled mixed FTS-parallel.   

Additionally, we state four key assumptions necessary for our definition to be robust:  (1) 
each production site works during its day as a “sub-team” and it needs within-site coordination;  
(2) a sub-team can consist of one or more members; (3) the hand-off from one site to the next 
can occasionally be empty in the case of holidays or emergencies; and (4) there is a common 
digital product repository (such as a software configuration management system), which allows 
all sites to “commit” the code/objects at the end of the workday. 

As a final step in clarifying FTS, it is important to disambiguate FTS and to state clearly 
what FTS is not.  We delineate four types of similar concepts, which are not FTS.  

Global knowledge work.  Global knowledge work is a general label for geographically 
dispersed knowledge workers working collaboratively across global multiple global boundaries 
[14].  However, in most cases these knowledge workers have little task dependency and do not 
hand-off work in order to reduce duration. Therefore, while FTS is one instantiation of global 
knowledge work, most global knowledge work is not FTS because it tends to fail one or more of 
the four criteria of the FTS definition above. 

24-hour business processes. Such work arrangements are quite familiar in modern call 
centers since they can automatically route calls to workers who are on active shift somewhere 
else in the world (usually in daylight hours). However, in most cases these knowledge workers 
have little task dependency and do not hand-off work in order to reduce duration.  Global 
helpdesks, for example, are set up to provide continuous service coverage around the clock. 24-

                                                 
2 Here we use the term “shift” which, when it happens across time zones, it involves a different “site.”   
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hour business processes are not the same as FTS because they fail criteria #1 and #4 of the FTS 
definition above. 

24-hour manufacturing. In a continuous production line, workers assemble products until the 
end of their shift. Shifts are employed to fully utilize expensive production/factory resources, 
which could not produce more by simply enlarging the production crew in a single shift. In 
software development, however, expensive production resources (e.g., testing labs, hardware 
platforms) are not usually the driver of the project configuration. Rather, the resource that is 
shared across shifts is the software code itself along with its meta-data. 

Co-located multi-shifts. A reasonable alternative to FTS is to choose one location where 
labor is cheap and run several 8-hour shifts of software developers. In addition to cost advantage, 
the shifts can be timed to overlap at the shift transfer times to allow for synchronous face-to-face 
hand-off coordination. Such a configuration is feasible, but our interest in FTS rests on the 
premise that distributed global work is a given (an endogenous factor) and hence our challenge is 
to understand how to do it optimally. After all, globally distributed software development is 
more difficult to manage and coordinate than co-located development and yet it is ubiquitous – 
despite its difficulties.   

 
Speed, Duration, and Calendar Efficiency 

Time-to-market – and the related concept of task duration – are important areas of inquiry 
because they are relatively under-studied in the disciplines of information systems (IS) and 
software engineering. The IS literature has devoted some attention to the time domain but has 
largely focused on subjective perceptions of time [38] rather than approaches to increasing 
speed. In global software engineering/development there has been some tangential interest in 
speed and some studies [22, 23] have found that multi-site software teams take longer than co-
located teams. 

In our own research stream, beginning in 2003, we studied the effects of time separation 
on speed. Cummings et al [11] studied global teams in the field and found that the time zone 
difference between two software developers increases delay, but this increase is significant only 
when team members have no overlapping work time. When there is some time overlap, such as 
with synchronous hand-off, the effect on delay is negligible. Espinosa et al [15] experimented 
with time zone variations in a computer lab and found that small increases in time zones 
(compared to co-located) reduced speed, but as more time zone separation was added, speed 
increased, suggesting that there are speed advantages to working across time zones. While these 
studies may point to the potential benefits of FTS, they do not specifically address FTS work in 
which the workflow is synchronized to take advantage of time zones. 

In order to fully understand how FTS may affect speed and duration we analyze the 
efficient usage of the entire calendar time available for production. We introduce the term 
“calendar efficiency” to focus our discourse in the rest of this section and in Table 1.  We define 
calendar efficiency as: the percent of all of the calendar time (e.g., 24x7= 168 hours available per 
week) that is used productively for work. Thus, a 40-hour work week utilizes 23.8% of the 
calendar workweek (40/168).  Therefore, the calendar efficiency is only 23.8% efficient, 
showing that there is a lot of room for calendar efficiency improvement.  One simple way to 
increase calendar efficiency is to work overtime.  Our usage of the term “calendar efficiency” is 
analogous to Cameron’s compression or improvement factor [6] in his treatment of FTS.  

In Table 1 we compute the calendar efficiency in different modes (note our assumptions 
at the bottom of the table; also note that we do not introduce any notions of labor units or 
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productivity yet).  The key numbers appear in Column 4, beginning with a typical one-site team 
(the Baseline), which uses only a dismal 17.9% of the overall calendar time after taking into 
account non-task activities. This rather low figure proves the high potential for FTS. One simple 
way to increase calendar efficiency is to work overtime, but the typical Overload mode 
(overtime) only raises calendar efficiency to 23.8%. A very heavy Overload mode of 20 hours of 
weekly overtime raises calendar efficiency to 29.8%, but is not sustainable over a long time 
period because of employee burn-out.  

 

  

Calendar 
efficiency 

net 
 (task time only) 

Calendar 
efficiency   

(task + non-task  
time)  

Shifts/ 
sites Descriptor 

 
Hours Percent  Hours Percent  

Maximum 
calendar 
time per 

week 
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 

1 Baseline 30 17.9% 40 23.8% 168 hours 
1 Overload (light)  = + 10h/wk overtime 40 23.8% 50 29.8% 168 hours 
1 Overload (heavy) = + 20h/wk overtime 50 29.8% 60 35.7% 168 hours 
2 Follow The Sun  60 35.7% 80 47.6% 168 hours 
2 Follow The Sun  (+ overtime 10h/wk) 80 47.6% 100 59.5% 168 hours 
3 Follow The Sun   90 53.6% 120 71.4% 168 hours 
4 Follow The Sun 120 71.4% 120 71.4% 168 hours 

 

 
Assumptions and basis for calculations    
• Days per week = 7; Work days per week are only 5.   
• Hours per day = 8 hours per shift except for the Overload modes. 
• Overload time assumes that all additional hours are devoted to task (rather than non-task) activities. 
• Task activities include all software development work including all meetings and all coordination time. 
• Non-task activities = 25% of workday. These are activities such as staff recruiting, writing a memo about the 

previous project, filling out time sheets, or fixing the copier. These are not coordination activities, which we 
discuss later in this article. We use 25% here, building on the rules-of-thumb in the Agile community: task 
activities are called “ideal working hours” and are typically estimated at 50-75% of the workday  [10]  

• Coordination time losses or gains are ignored in this table and will be introduced in the next section.  
• Time Off.  Company holidays at each site are ignored here. Generally, they represent about 6% of annual 

work days across nations. Individual absenteeism, as well as individual vacations, is assumed to have 
negligible effect.  

• Multi-tasking is ignored.  
• Clarification for FTS with 4 sites.  At this level, 24 hours, or 100% task time is utilized per work day, since 

non-task activities can be conducted separately and do not detract from calendar usage (i.e. 6 hours of task 
time and 2 hours of non-task time per site).   

 
  

Table 1: Calendar efficiency in different work modes 
 

The significant FTS potential for calendar efficiency gains becomes evident in the bottom 
rows of Table 1. An optimal FTS configuration can raise calendar efficiency as high as 71.4%. 
The four-site FTS approach reduces duration by nearly four times relative to the baseline.  
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At this point we begin to introduce our 12 research propositions. The first proposition is 
based only on the concept of calendar efficiency. Later we introduce other factors into 
subsequent propositions. In regard to calendar efficiency, our discussion suggests that:    

 Proposition 1: Compared to conventional global configurations, FTS increases calendar 
efficiency substantially and this efficiency increases as the number of shifts/sites increase.  

 
Structural Considerations 

In this section we motivate the following issues around FTS: phase specificity, choice of 
FTS development method, and FTS product architecture. We then illustrate some of these 
concepts with some exploratory observations.  

 
Phase Specificity    

There is substantial anecdotal evidence in industry that FTS can be effective in reducing 
duration within specific phases (Figure 3). Testing can work well in FTS: one team searches for 
bugs and documents these bugs in a database, which is then accessed and worked on by the 
software team at another site many time-zones west. For example, EDS claims to do this 
between Argentina and India [18].  Testing is a good fit because the hand-off is structured, 
granular and – with trained staff – will usually not suffer much from miscommunication. Short 
spurts of prototyping have also been successful in FTS. For example, PortalPlayer, an early 
maker of embedded software for Apple’s iPod, with R&D in India and Silicon Valley, claimed 
that it performed rapid prototyping using FTS [5]. These anecdotes are consistent with the 
authors’ industry observations. For example, software engineers claim benefits of FTS, but these 
instances of FTS are brief spurts of several days, or at most a few weeks.   

 

 
Figure 3. Phase-specific activities that fit FTS displayed above a generic waterfall SDLC.  

  
 In contrast, work that spans more than one phase may not be suitable for FTS because of 

the amount of communication that is necessary to move from one phase to the next.  
Consequently our next proposition: 

Proposition 2: Relative to work that spans multiple SDLC phases, the work within a 
particular SDLC phase is more suitable for FTS development because its specificity    
allows for more structured and granular hand-offs. 

 
 

Define Design Code Test Integrate

•Maintenance
•HelpdeskTest & Fix Rapid Prototyping
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Development Method 
Phase specificity means that FTS is achieving only partial, limited improvements in 

overall development speed.  So, those who have examined FTS closely have recognized the 
importance of selecting a FTS software development methodology that spans the entire 
development process and supports the special needs of daily hand-offs. IBM’s classic FTS team 
of the 1990s constructed a unique organization structure and process [7].  Similarly, Cameron at 
EDS crafted a special methodological adaptation for FTS [6]. 

This leads to considering the advantages and disadvantages of linear-sequential 
approaches (e.g. waterfall, incremental) versus iterative models (e.g. Unified Process, Agile UP, 
Agile [2, 22, 25, 44]) and how they apply to FTS. The limitations in phase specificity, which we 
just noted above, suggest that linear-sequential approaches are unlikely to be optimal for FTS 
(except for work within a single phase) and therefore we should turn to iterative models. Each 
iterative model includes all the activities of the SDLC phases. Hence, those models that use 
longer iterations resemble the linear-sequential approaches whereas models that use short 
iterations blur the borders between SDLC activities. In the latter case, FTS hand-offs contain 
artifacts that cover all activities: requirements, design, code, and test. 

In order to move forward, we chose a specific iterative approach. We argue that the Agile 
approach is the most promising of the iterative approaches for FTS – and use it in exploratory 
studies described later in this article – for the following reasons. First, it has the enabling 
property of using short time-boxed iterations of 2 to 4 weeks each. The customer requirements 
for each iteration are feature-based, thus all the SDLC activities are merged in each iteration, and 
features are designed, tested, developed, and presented.  Second, with all activities intertwined, 
the Agile method introduces continuous integration that enables granular and structured daily 
hand-offs. Continuous integration (while using an automated integration environment) enables 
each team to develop in its own code-base in its own time period. Yet, each team maintains an 
updated, testable code base to be used by the next production site. The policy of keeping the 
integration green (i.e., all tests pass) at the end of the work day is common in Agile teams. It 
ensures high quality hand-offs, thus it fits nicely with FTS requirements.  Third, Agile inspires a 
sustainable pace that fits the notion of working mostly during one’s daylight hours. Fourth, Agile 
promotes exhaustive automated testing which should achieve a duration reduction.  

  Also note that Denny, Gupta and colleagues have attempted to conceptually marry FTS 
with elements of Agile: [12, 20].3  All of which leads to the following:  

   Proposition 3: Compared to conventional global configurations, FTS is more suitable for 
Agile development when some core Agile practices are used: small time-boxed iterations, 
exhaustive automatic testing, continuous integration, and sustainable pace. 

 
Product Architecture 

How the software product is architected and how the work is partitioned across sites may 
have an effect on the extent to which FTS helps increase speed.  In general, FTS may seem  
somewhat paradoxical because it violates one of the foundational principles of software 
management – that software should be decomposed and that dependencies (coupling) between 

                                                 
3 Denny et al.’s Agile-FTS conceptual model introduces the notion of “composite persona” as a potential 
collaboration model to deal with the iterations. Composite Persona (CP) is “a highly cohesive micro-team that, like a 
corporation, has simultaneous properties of both individual and collective natures. […]  With respect to CPs, each 
site is a mirror of the other, having exactly the same CPs as each other site.”  
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development groups be minimized ([34]; also see Figure 2). Once decomposed, the work may 
then be assigned to different sites based in part on where expertise resides [7, 35], regardless of 
locations and time zones. This type of decomposition and partitioning is unsuitable for FTS 
development because there would be very little work to be handed off at the end of each day. 

However, we posit that there are exceptions to the traditional architecture that manifest at 
some optimum point of complexity-granularity that suits FTS.  Our example is from large 
complex systems that work around modification requests (MRs). Large, complex modules and 
subsystems are typically developed and modified by large groups of developers, often 
geographically dispersed [23]. Top priority MRs involve the development of new features or 
modifications that have severe impact on client service, either in the form of new critical 
functionality or repair of critical client services [16].  Because of the complex interactions of the 
new and existing code in such modifications, it is best to employ small teams and develop the 
code sequentially rather than to use a larger team that would need to develop the software in 
parallel and then integrate the various parts. Thus, these are cases where the complexity is high, 
the granularity is low, and there is a need to keep the team small in order to reduce the number of 
communication links between individuals. We posit that it is precisely in these situations that 
FTS can help accelerate development speed. Our propositions summarize the key points we 
surfaced. 

Proposition 4:   FTS will be more successful for product architectures that partition the 
software into smaller, relatively independent components (e.g. features, modification 
requests, modules). 

Proposition 5:    FTS is more suitable for the development of product components than for 
integration of components.  

Proposition 6:    FTS suitability increases when a product component is more functionally 
cohesive and more well-defined.  

Field Study and Preliminary Observations 
In order to address the “FTS challenge” we also conducted an exploratory comparative 

field study. This part of our FTS study derives from the Design Science research paradigm [24]. 
Here, we not only observe the phenomenon, but we work, in a utilitarian sense, on a build-
evaluate loop. Design Science seeks to create new and innovative artifacts, where the artifact can 
be a physical artifact, a software algorithm or, in this case, a method/process.  

Our exploratory study is described in more detail in a prior article [9] and has been 
extended since then in a second phase, so here we only summarize the key parameters and 
observations from the two phases.  We use these preliminary observations to help develop the 
conceptual aspects of FTS. (We note that Gupta and colleagues have also progressed in a 
somewhat similar direction in their FTS study in a year-long comparative field study at IBM 
[20]). 

As we noted, evaluating and testing FTS requires making implementation choices 
regarding configuration and methodology. One of these choices was to use the Agile 
methodology. Our study compared teams engaged in Agile development, divided into FTS teams 
and control teams.  

The participants were experienced computer science and electrical engineering students 
at an elite university, all between ages 20-30. Most of the students were working part time in 
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software engineering roles in sophisticated firms during. The study task required 400 person-
hours per team.     

The control teams could interact in any way they wished, including face-to-face and 
synchronous. On the other hand, in order to simulate time zone differences, the FTS teams had 
strict rules imposed on their interaction such that only asynchronous hand-offs were allowed 
between the sub-teams at fixed intervals of time.4  Figure 4 depicts the actual staggered activity 
of the two sub-teams of an FTS team.   

 

 
 Figure 4: A slice of several days of activity from the FTS team in one of the Agile 

iterations of our field study (note: number of revisions refers to number of historical 
versions of source code files). 

 
Our comparative field studies generated a number of data streams. First, we measured 

duration and were also able to collect other data generated by the version control system, such as 
the number of check-in operations and the number of revisions per file. Further, we examined the 
electronic work logs and we analyzed students’ verbal reflections during the semester. 

In our comparison studies we found that FTS teams performed roughly equally or better 
than the control teams, while both teams in both projects met the project requirements with 
respect to functionality and level of quality. More importantly, using our proxies for measure of 
duration reduction achieved by the FTS teams, the first team achieved reduction of 
approximately 10% and the second-team of approximately 50% as compared to their respective 
control teams.  These results show some promise for FTS with short Agile iterations.   

This preliminary positive finding about speed contrasts with previous results [23] in 
which distributed teams exhibited longer duration relative to co-located teams. We suggest that 
our limited, qualified field study success happened because of the Agile implementation, 
attributed to the tight iterations and deadlines involved.  

Our analysis of the development log documentation was also revealing. In the first 
comparison, when asked to reflect on the process, the FTS participants described the special way 
they handed off the work at the end of their working hours. When we checked the electronic 
forum we found that the level of development log documentation was markedly better for the 
FTS team. In the second comparison, the FTS team wrote about 140% more documentation lines 
                                                 
4 In the first study there were two hand-offs per day; in the second study there was one hand-off per day.  
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as well as about 25% more messages.  In summary, as would be expected with FTS, since all 
other channels of (synchronous) communication were forbidden, the high volume of 
documentation (e.g., commit logs) increased. In addition, we also observed better documentation 
quality.  

Finally, we received verbal and written comments from the study participants. Our 
perception from participant feedback was that the cross-site coordination costs were not as 
serious as we had anticipated.  Perhaps the most interesting finding was that the time pressure 
imposed on the FTS teams by the study design compelled participants to work more 
productively.  In other words, what the FTS participants were telling us was that they were 
producing more per hour individually. This is related to the notion of time-boxing, which will be 
further elaborated in the next section. We had initially assumed that individuals have equal 
productivity regardless of their configuration, but we found indications that the individual 
productivity of FTS participants actually increased, thus reducing task duration.  In other words, 
FTS teams appears to behave differently – they tend to be more disciplined and time sensitive 
and when time is managed correctly this impacts outcomes positively. In fact, the Agile 
movement of recent decades advocated and showed findings that support ours [27].  We build on 
these findings in the next section where we compare coordination and productivity in FTS with 
traditional approaches. 

In summary, our field study shows that effective hand-offs are necessary for FTS to be 
feasible. Furthermore, our study suggests that a work procedure that includes developing small 
code components (code and test) with continuous check-in every day (as the hand-off process) 
may be an effective method for a successful FTS practice. The next section further analyzes the 
importance of efficient hand-offs. 

 
Analytical Discussion 

The key to learning whether or not FTS can reduce duration lies in understanding how 
coordination cost and individual productivity varies when comparing co-located, FTS, and 
conventional global configurations. In this section we introduce the key FTS variables we use to 
analyze these issues: within-site coordination time, cross-site coordination time, and individual 
productivity. We then combine these variables into an overarching equation of FTS duration 
payoff to develop further propositions. 
 
Coordination Costs 

Coordination costs are at the crux of why FTS is difficult. Coordination is, by definition, 
the work necessary to manage dependencies among the task activities carried out by multiple 
developers [30]. For example, if there is a particular software job that requires x lines of code 
and each developer can individually produce an average of y lines of fully debugged code per 
hour, then a single developer could complete the job in x/y hours. Following Brooks’ logic [4], 
two developers would take longer than x/2y because the two developers not only need to carry 
out their individual software development assignments, but they now need to devote some time 
to coordinate and integrate their work. A key FTS question is, therefore, whether these two 
developers can finish the software production task faster by working in parallel and then 
integrating the code at the end, or by working sequentially in shifts and handing off the work to 
each other at the end of each shift. 
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In other words, while coordination is necessary, the time spent coordinating is time 
diverted away from individual task work. Therefore, we contend that FTS will be beneficial to 
duration when the total coordination costs associated with the project are minimized. For 
example, if the coordination costs of integrating the work of two developers working in parallel 
mode are identical to the FTS coordination costs of two developers working sequentially, then 
the complete software job will take the same time to complete in either mode. Therefore, we will 
show that when multiple developers are involved, then FTS will reduce duration when the 
combination of within-site coordination costs (i.e. parallel work within each site) and cross-site 
coordination (i.e. hand-off coordination costs) are minimized. Next, we expand on these basic 
ideas.  
 
A Simple Model of FTS Coordination and Duration 

Here we offer a basic model that can help us gain insights into how key elements of work 
affect duration in FTS. In our model we decompose duration into three main components: (1) 
Cross-site coordination time; (2) Within-site coordination time; and (3) Personal productivity.  

Cross-Site Coordination Time.   These are the costs associated with hand-off activities 
from site to site. Due to the difficulty of coordinating and resolving task issues [29] across 
sites/shifts, the cross-site coordination cost will most likely be positive and nontrivial. For 
example, the lack of task awareness beyond a person’s immediate workspace has been found to 
impede effective responses to unexpected events [36]. Cross-site coordination is closely related 
to the concept of handoff efficiency, which we use further below. FTS is difficult and uncommon 
because the production teams are sequentially handing off work-in-progress (unfinished objects). 
The production objects require daily “packaging” so that the task is understood by the next 
production site.  There are times when the next production site needs more information and 
cannot proceed fully without clarification.  When clarification is required, an entire day may 
elapse because the previous site has already gone home. Sometimes misunderstandings also lead 
to re-work (i.e., a type of vulnerability cost [13]). 
 
 
 
 
 
 
 
Figure  5:  Speed-up as a function of hand-
off efficiency for three FTS configurations. 

 

 

Figure 5 illustrates how hand-off efficiency affects duration. We assume for the moment 
that the labor resources at each site are fixed and equal and that only cross-site coordination is 
needed for hand-off. For example, a hand-off efficiency of 90% means that 90% of a developer’s 
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day is productive and that a total of 10% (on both the sending and receiving side) is devoted to 
hand-off activities. In the 1-site configuration of Figure 5 (the baseline) there is no hand-off, 
therefore duration is unaffected by hand-off efficiency. If we added one more site with an FTS 
arrangement then we would have doubled the speed, but only if the hand-off efficiency was 
100%. As the hand-off efficiency declines, the gains in speed by adding further sites also decline 
because we are introducing cross-site coordination costs. Hence the two propositions:  

Proposition 7: As hand-off efficiency increases, so does FTS development speed.  
Proposition 8: Increasing the number of FTS sites that have low hand-off efficiency leads to 

decreasing marginal improvements in duration speed.   
We make a few more comments about assumptions and factors that influence hand-off 
efficiency: 
• Hand-off failures. A hand-off failure occurs when the receiving site fails to understand the 

work-in-progress sent by the previous site, which is more likely when team members have 
less shared knowledge [17].  

• Variable hand-off time.  With each added site (e.g. going from three to four sites) there is 
cumulatively an increasing amount of information that needs to be conveyed and received.   

• Unequal hand-off effort for sender and receiver.  It takes time ta to prepare and process a 
day’s work for the sender and it takes tb  for the receiver to process and comprehend this 
work. It is unlikely that ta = tb. 

Within-Site Coordination Time.   From this point we relax the simplifying assumption about 
labor resources that we used in the prior subsection and in Figure 5 and assume a scenario in 
which there is a fixed amount of people across sites, regardless of the number of sites. Thus, by 
splitting the human resources into two or more sites, the overall impact is to reduce the number 
of members in each site’s sub-team so that, per Brooks’ Law, the coordination time needed 
within each site decreases because of reduced task dependency links requiring  communication 
[1]. 

Recall that the number of possible coordination links among n members in a team is 
(n/2)(n-1).  By splitting a team into s sites, the number of links inside each site is reduced. That 
is, a team of n developers distributed across s sites will result in s sub-teams of size n/s. 
Therefore, the number of possible within-site dependency links within one sub-team will be 
(n/2s)(n/s-1) and the total number of links for all s sites will be s(n/2s)(n/s-1).  The difference in 
the total number of links between 1 site and s sites is exponential. Hence: 

Proposition 9: The potential for speed gains due to reduced within-site coordination 
increases exponentially for larger teams if the teams are subdivided into smaller sub-
teams across multiple FTS sites. 

Naturally, the number of possible FTS sites, s, is limited by the task time per day.  For 
example, if the daily task time is six hours, then the maximum number of sites is four (net of 
hand-off coordination time). Hence: 

Proposition 10: The potential for speed gains due to reduced within-site coordination needs 
in FTS increases exponentially as a team is distributed across more FTS sites, but these 
gains are limited by the daily task time. 

Propositions 9 and 10 are best illustrated examining Figure 6 (where the number of links are 
calculated with the formula above). As the diagram shows, the number of possible within-site 
dependency links drops sharply as the team is split into more sites, and this drop is more 
pronounced for larger teams. 
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Figure 6 – Number of Possible 
Within-site Dependency Links by Site 
and Team Size 
 

Personal productivity.   Up until this point we have assumed that each individual’s 
productivity is fixed regardless of location and configuration, once non-task time and 
coordination times are netted out. Other models [27, 28, 42] have also made similar assumptions 
while in [39] productivity is a group variable that is impacted by coordination.  However, based 
on our exploratory field study, we argue that personal productivity may actually go up in a FTS 
setup because of “time-boxing” or “daily deadlines.” Time-boxing impacts individual behavior – 
of the individual programmer – by setting very strict deadlines in each iteration. The effect of 
such temporal coordination on individual interaction behavior has found to have positive effects 
on performance [32]. The task (or work unit) is much smaller and easier to scope out.  The 
individual is more focused in his/her work and gets distracted less often.  Personal time-boxing 
curbs perfectionist tendencies, procrastination, and does not allow individuals to over commit to 
a task.  Time-boxing of iterations was advocated in the older notions of Rapid Application 
Development by James Martin [31] and has been one of the foundations of Agile and UP [25].  
Agile approaches also set a time-box for daily completion in that all work has to be test-ready. 
Hence the next proposition:    

Proposition 11:   Time-boxing, a by-product of any FTS configuration, spurs individual 
productivity (relative to other configurations) due to added rigor, sense of deadline, and 
goal orientation.  
Next, we combine these three key variables and derive a basic equation that captures FTS 

duration. Note that: all three variables represent a summation (Σ) of all links and all individuals; 
all variables are measured in units of time (e.g., days); and there is an equal number of 
individuals in each configuration.  Thus, the difference in duration when going from a single-site 
(co-located) configuration to a FTS configuration can be represented as: 

(Eq. 1)        ΔDURATION =  ΔCROSS +  ΔWITHIN + ΔPERSONAL  
Where: 

• ΔCROSS is the difference in duration due to cross-site coordination between single-
site and FTS configuration (recall from the discussion around propositions 7 and 8 
that ΔCROSS will certainly be positive – i.e., duration increases due to cross-site 
coordination). 
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• ΔWITHIN is the difference in duration due to within-site coordination between single-
site and FTS configuration (recall from the discussion around propositions 9 and 10   
that ΔWITHIN is likely to be negative – i.e., duration decreases due to lower within-
site coordination needs as sub-teams become smaller).  

• ΔPERSONAL is the difference in duration resulting from changes in personal 
productivity alone (recall from the discussion around proposition 11 that that 
ΔPERSONAL is likely to be negative – i.e., duration decreases due to time-boxing).    

It follows from Eq. 1 that task duration will be reduced when:  
                (Eq. 2)  ΔCROSS + ΔWITHIN + ΔPERSONAL < 0 

Stated in words, Eq.2 indicates that FTS task duration reduction is accomplished when 
the decrease in duration (due to lower within-site coordination and increased personal 
productivity) is larger than the increase in duration  due to higher cross-site coordination. 

This is our central FTS duration equation. It captures the essence of our research 
challenge: to parse these three variables and explore how their negative effects can be mitigated, 
while accentuating the positive effects. We summarize the FTS duration payoff equation with 
this final proposition:  

Proposition 12:   FTS is beneficial for software development speed when the reduction in 
duration due to reduced within-site coordination, plus increased individual productivity 
due to time-boxing, is greater than the duration increase due to increased cross-site 
hand-off coordination.  
As with any modeling, we have made simplifying assumptions. Here we note two more 

assumptions not mentioned above, which could be relaxed, thus making the model more 
complex.  Notice, however, that as we relax the two assumptions, FTS becomes less attractive.  
1) Personnel are interchangeable.  This is an assumption common to most other models.  This 

assumption is not as far-fetched as one would first think; there are quite a number of software 
development organizations that have set up mirror sites.  A mirror site means that groups 
with similar distribution of programming skills are created in time-dispersed locations 
(similar to assumptions in other studies [12, 39]).  Another similar assumption is made in the 
concept of “Extreme (paired) Programming” (XP).  

2) No absenteeism.  If one of the nodes is operating at less than full capacity because of sick 
days or vacation, then work may be delayed, thus affecting FTS task duration.   

Comparison to other FTS models in the literature 
As noted before, four recent studies conducted FTS modeling or simulation [28, 39, 41, 

42].  All four studies deal to some extent with the issue of speed, while only two of them [39, 42] 
inquire whether FTS is beneficial, as we have done in the present study. Interestingly, the four 
studies are complementary in a number of respects: they use different methodologies, 
assumptions (especially regarding coordination) and objectives.  Jalote & Jain [28] set out to 
understand how to optimally allocate FTS tasks to individual nodes using the methodology of 
critical path and network optimization; Sooraj P. & Mohapatra [41] set out to understand how to 
optimally allocate geographical sites in FTS using the methodology of a general sequential mode 
model; Taweel & Brereton [42] explored FTS sensitivity to overhead and hand-offs using a 
mathematical model; and finally, Setamanit, et al. [39] evaluated several global software 
development configurations, including FTS, using discrete event simulation.    
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Summary and Conclusions 
The “FTS challenge” is to move beyond the idealized appeal of FTS toward verifiable 

and consistent execution. This article is the first to comprehensively provide the conceptual 
foundation for the study of FTS theory and practice.  A first step is for research to apply a 
consistent formal definition of FTS, as we have done. We acknowledge that it is possible that 
even after concerted efforts the FTS challenge may not be achievable and we may need to 
conclude that there are no achievable benefits to FTS, in which case the label may well be: the 
“FTS myth.” Thus, FTS achievability is an empirical question for which a necessary first step is 
a consistent definition.    
  The conceptual framework we have provided is important because it helps analyze the 
specific conditions under which FTS can be beneficial in reducing product development 
duration. We have highlighted the importance of understanding the concepts of calendar 
efficiency and hand-off efficiency in helping understand how to analyze, design and implement 
successful FTS practices that can reduce task duration. We have developed several testable 
propositions (summarized in Table 2) surrounding key FTS concepts, including: calendar 
efficiency; development method; product architecture; hand-off efficiency; and three key 
variables – within-site coordination, cross-site coordination and personal productivity.  It follows 
from our discussion that hand-off efficiency is paramount to FTS success in reducing software 
development duration.   

A limitation of our overarching analysis is that we have only investigated the effect of 
FTS on speed, and not on product quality. Finally, we note that while our study of FTS refers 
primarily to software work, our concepts and propositions are generally applicable to most 
knowledge work that is digitized and distributed globally.   
  



Page 18 of 21 

 
Proposition 1: Compared to conventional global configurations, FTS increases calendar 
efficiency substantially and this efficiency increases as the number of shifts/sites increase. 
Proposition 2: Relative to work that spans multiple SDLC phases, the work within a particular 
SDLC phase is more suitable for FTS development because its specificity    allows for more 
structured and granular hand-offs. 
Proposition 3: Compared to conventional global configurations, FTS is more suitable for 
Agile development when some core Agile practices are used: small time-boxed iterations, 
exhaustive automatic testing, continuous integration, and sustainable pace. 
Proposition 4:   FTS will be more successful for product architectures that partition the 
software into smaller, relatively independent components (e.g. features, modification requests, 
modules). 
Proposition 5:    FTS is more suitable for the development of product components than for 
integration of components.  
Proposition 6:    FTS suitability increases when a product component is more functionally 
cohesive and more well-defined.  
Proposition 7: As hand-off efficiency increases, so does FTS development speed.  
Proposition 8: Increasing the number of FTS sites that have low hand-off efficiency leads to 
decreasing marginal improvements in duration speed.  
Proposition 9: The potential for speed gains due to reduced within-site coordination increases 
exponentially for larger teams if the teams are subdivided into smaller sub-teams across 
multiple FTS sites. 
Proposition 10: The potential for speed gains due to reduced within-site coordination needs in 
FTS increases exponentially as a team is distributed across more FTS sites, but these gains 
are limited by the daily task time.   
Proposition 11:   Time-boxing, a by-product of any FTS configuration, spurs individual 
productivity (relative to other configurations) due to added rigor, sense of deadline, and goal 
orientation.  
Proposition 12:   FTS is beneficial for software development speed when the reduction in 
duration due to reduced within-site coordination, plus increased individual productivity due to 
time-boxing,  is greater than the duration increase due to increased cross-site hand-off 
coordination.  

Table 2:  Propositions for the study of FTS 
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