
“Follow The Sun” Workflow In Global Software Development

 Erran Carmel
American University

J. Alberto Espinosa

American University

Yael Dubinsky
IBM Haifa Research Lab, Haifa, Israel

To appear in Journal of Management Information Systems 2010.

Abstract
Follow The Sun (FTS) has interesting appeal – hand-off work at the end of every day from one
site to the next, many time zones away, in order to speed up product development. While the
potential impact on “time-to-market” can be profound, at least conceptually, FTS has enjoyed
very few documented industry successes because it is acknowledged to be extremely difficult to
implement. In order to address this “FTS challenge” we provide here a conceptual foundation
and formal definition of FTS. We then analyze the conditions under which FTS can be
successful in reducing duration in software development. We show that handoff efficiency is
paramount to successful FTS practices and that duration can be reduced only when lower within-
site coordination and improved personal productivity outweigh the corresponding increase in
cross-site coordination. We also develop 12 research propositions based on fundamental issues
surrounding FTS, such as: calendar efficiency, development method, product architecture and
hand-off efficiency, within-site coordination, cross-site coordination, and personal productivity.
We combine the conceptual analysis with a description of our FTS exploratory comparative field
studies and draw out their key findings and learning. The main implication of this article is that
understanding calendar efficiency, hand-off efficiency, within-site coordination and cross-site
coordination is necessary to evaluation – if FTS is to be successful in reducing software
development duration.

Keywords: duration reduction; calendar efficiency; time to market; handoff efficiency; global
coordination; 24-hour development; round the clock development.

Page 2 of 21

Introduction
Follow The Sun (FTS from here on) is a rather intuitive idea: hand-off work at the end of

every day from one site to the next site many time zones away (for example, USA to India), so
that the work can be advanced while one’s team rests for the night. The potential impact can be
profound, both theoretically and for practice. Theoretically, n sites can increase their
development speed by organizing the work tasks to work sequentially on a daily basis by
optimizing coordination costs. For practice, FTS is appealing because of the potential to reduce
“time-to-market.”

Despite such temptations, FTS has had few documented industry success cases. As was
acknowledged more than a decade ago, “Follow the sun with daily hand-offs is very difficult…”
[7]. This difficulty has not changed noticeably in the ensuing years despite improved
technologies and methodologies [3]. In this article we investigate this “FTS challenge” – the gap
between promise and reality – with a comprehensive conceptual examination.

FTS (also called: 24-hour development and round-the-clock development) is one form of
global software development [7] with all its corresponding challenges of coordination barriers,
cultural differences, and communication difficulties [14]. However, we contend that FTS is
uniquely focused on speed improvement in that the project team configuration is designed to
reduce cycle-time (also known as time-to-market reduction or duration reduction).

We position our research as a conceptual foundation to study FTS for the express purpose
of accelerating software work in order to reduce time-to-market. FTS requires formidable daily
hand-off coordination – a time and effort cost – which is very much at the heart of its difficulty.
However, creative practices may reduce coordination costs, which leads to our research question:
can FTS be more effective in improving development speed – and if so, in which ways?

Our research question can be further decomposed into more specific unresolved FTS
issues, which we begin to address in this article: (1) FTS definition – the term is used
inconsistently. In order to make progress in this research area it is important to adopt and employ
a consistent definition so that we can adequately compare and contrast findings; (2) Development
speed – we dissect its theoretical basis and introduce a related concept of calendar efficiency; (3)
Development method – the particular development method employed is likely to drive FTS
success; (4) Product architecture – the architecture chosen will likely drive FTS success
(software products can be partitioned into subsystems, modules, features, etc.); and (5)
Coordination costs – the highly-interdependent work that FTS imposes has different
coordination costs relative to both co-located and conventional global work configurations.

Our goal in this article is to begin to address these issues and provide a conceptual
framework to guide further studies of FTS. In the first section we provide a theoretical
foundation for the study of FTS. We formally define FTS and then elaborate on related issues,
particularly development speed – the primary driver for FTS. Throughout our discussion we
formulate propositions. Next, we examine the structure, methodology and architecture of FTS
work and then use a field study to compare FTS development speed against a co-located team.
Finally, we present a conceptual analytical discussion and introduce three key variables of FTS
analysis.

Background on Time-to-market and FTS

In order to understand FTS one needs first to understand development speed and its
associated concept of time-to-market. Time-to-market is the length of time it takes from product

Page 3 of 21

conception until the product is available for use or sale [40] (Figure 1). Time-to-market is most
important in industries where products become outmoded quickly, such as mobile telephone
handsets and their corresponding software. Time-to-market is also important for strategic
information systems such as competitive e-commerce systems or innovative supply chain
management systems. There are other managerial reasons for duration reduction: avoiding
contract creep, schedule slippages, and budget overruns.

Figure 1. Timeline of time-to-market, measured from inception to use/sale

A desire for rapid development – a sense of urgency – is shared by most firms and

projects in a competitive marketplace, but most efforts to reduce project duration are reactive,
utilizing overtime hours or work speed-up (e.g., work faster, skip steps, set aggressive
deadlines). All these reactive efforts have real costs due to burnout and fatigue [33]. Adding
personnel for speed-up is of little interest in software because of the wisdom gained long ago
from the seminal Brooks' Law [4] – "adding manpower to a late software project makes it later."
Rather than reactive tactics, proper time-to-market reduction requires a deliberate design around
the objective of speed that is based on high awareness of achieving this goal within the
development team [33, 37, 40].

The first well-documented global software team specifically set up to take advantage of
FTS was at IBM in the mid-1990s [7]. This team was set up from inception to employ FTS,
spread out across 5 sites around the globe. However, FTS was unsuccessful. It was uncommon
to move the software artifacts daily as had been hoped. Finally, the decision was made that the
effort of frequent daily hand-offs (tight coupling) was to be abandoned and collaboration
between the sites was reduced to the loose coupling that is common in the vast majority of
today’s global collaborations.

The first researchers to examine FTS were Hawryszkiewycz, Gorton, and colleagues.
They conducted a series of small controlled experiments in the mid 1990s [19] but did not
continue their line of inquiry beyond this. Cameron [6] claimed some limited FTS success at the
global American firm EDS (now HP), but did not continue his efforts either. Gupta has also
written extensively about the promise of FTS or, more specifically, the 24-hour knowledge
factory [20].

During the last decade some have claimed successful FTS practices but, on closer
inspection, while these projects were indeed dispersed, they did not practice the daily hand-offs
of FTS [e.g., 43]. We note that this is consistent with the authors’ experience in industry: the
FTS term is used loosely and upon closer inspection there is no – or very little – FTS. For
example, contrary to myth, Indian offshore firms do little FTS [8].

Define Design Make Distribute

Time-to-market

Page 4 of 21

In summary, in the ensuing decade since the much-publicized IBM FTS project, there has
been little progress to address and understand the FTS challenge, either in the research literature
or in practice. With limited progress in empirical field research, the FTS research literature has
recently moved in another trajectory: mathematical modeling [28, 39, 41, 42]. We will return to
these models later in this article.
 As illustrated in Figure 2a and 2b, globally distributed configurations involve
decomposing tasks and allocating them to multiple sites in a way that minimizes dependencies
across sites [7, 22]: parallel work1 or development phase (we note that there are other
considerations besides minimizing dependencies, such as location of expertise). For our own
shorthand notation we will refer to these two configurations as "conventional global
configurations." The key difference between FTS (figure 2c) and conventional global
configurations is that FTS focuses on daily hand-offs from site to site, whereas the opposite is
true for conventional global configurations in which an attempt is made to reduce
interdependencies and hand-offs as much as possible.

Site 1
Site 2
Site 3

(a) Parallel

(b) Development Phase

(c) Follow The Sun
Figure 2. FTS compared to other globally distributed configurations. We refer to parallel-

and phase-based as “conventional global configurations.”

Defining and Disambiguating “Follow the Sun”
Based on the foregoing discussion, in this section we propose a formal definition of FTS.

A definition is critical since progress in FTS research requires that researchers use the same
frame of reference to compare results. Before we propose our definition, we posit that FTS
requires satisfying all four of these criteria:
1. The main objective of FTS is duration reduction. This criterion distinguishes FTS from other

popular global software development configurations and practices (e.g., offshoring is often
conducted for cost objectives, parallel development is a more manageable configuration).
FTS is clearly difficult and offers no other advantages over other configurations besides
speed.

2. Production sites are far apart in time zones. This criterion differentiates FTS from other
production acceleration tactics.

1 In the case of parallel work it is important to emphasize that coordination costs are usually quite high during the
integration phase.

Page 5 of 21

3. At any point in time there is only one site that owns the product. This criterion differentiates
FTS from conventional global configurations in which various sites may own different parts
of the product.

4. Hand-offs are conducted daily at the end of each shift. 2 This criterion differentiates FTS
from conventional global configurations which minimize dependencies and hand-offs
between sites.

Building on the above criteria, we define FTS as:
 “A round-the-clock work rotation method aimed at reducing project duration, in which
the knowledge product is owned and advanced by a production site and is then handed-
off at the end of each work day to the next production site several time-zones west.”

Our definition is flexible in a number of respects. First, FTS applies to any type of
knowledge work in which a knowledge product is being developed (not just software
development). For example, Gupta [20, 21] describes other knowledge-based applications that
claim to do FTS—at General Motors and at Office Tiger. Second, the definition is consistent
with broader definitions of global collaborative software development across global production
sites [26]. Third, it allows us to expand our thinking of how FTS work is organized. For
example, we usually envision FTS with two or three sites, but assuming 6 hours per site of
intensive software development per day (“task time”), it is theoretically possible to manage FTS
with even 4 sites spread out across time zones of the globe and perhaps even more. Fourth, our
definition allows for work time overlap time between sites, if desired, since many time-separated
teams plan for such overlap, at the beginning/end of a shift, to allow for synchronous
coordination. Fifth, in cases where some work days involve parallel work (and there is no FTS
hand-off), then these cases could be labeled mixed FTS-parallel.

Additionally, we state four key assumptions necessary for our definition to be robust: (1)
each production site works during its day as a “sub-team” and it needs within-site coordination;
(2) a sub-team can consist of one or more members; (3) the hand-off from one site to the next
can occasionally be empty in the case of holidays or emergencies; and (4) there is a common
digital product repository (such as a software configuration management system), which allows
all sites to “commit” the code/objects at the end of the workday.

As a final step in clarifying FTS, it is important to disambiguate FTS and to state clearly
what FTS is not. We delineate four types of similar concepts, which are not FTS.

Global knowledge work. Global knowledge work is a general label for geographically
dispersed knowledge workers working collaboratively across global multiple global boundaries
[14]. However, in most cases these knowledge workers have little task dependency and do not
hand-off work in order to reduce duration. Therefore, while FTS is one instantiation of global
knowledge work, most global knowledge work is not FTS because it tends to fail one or more of
the four criteria of the FTS definition above.

24-hour business processes. Such work arrangements are quite familiar in modern call
centers since they can automatically route calls to workers who are on active shift somewhere
else in the world (usually in daylight hours). However, in most cases these knowledge workers
have little task dependency and do not hand-off work in order to reduce duration. Global
helpdesks, for example, are set up to provide continuous service coverage around the clock. 24-

2 Here we use the term “shift” which, when it happens across time zones, it involves a different “site.”

Page 6 of 21

hour business processes are not the same as FTS because they fail criteria #1 and #4 of the FTS
definition above.

24-hour manufacturing. In a continuous production line, workers assemble products until the
end of their shift. Shifts are employed to fully utilize expensive production/factory resources,
which could not produce more by simply enlarging the production crew in a single shift. In
software development, however, expensive production resources (e.g., testing labs, hardware
platforms) are not usually the driver of the project configuration. Rather, the resource that is
shared across shifts is the software code itself along with its meta-data.

Co-located multi-shifts. A reasonable alternative to FTS is to choose one location where
labor is cheap and run several 8-hour shifts of software developers. In addition to cost advantage,
the shifts can be timed to overlap at the shift transfer times to allow for synchronous face-to-face
hand-off coordination. Such a configuration is feasible, but our interest in FTS rests on the
premise that distributed global work is a given (an endogenous factor) and hence our challenge is
to understand how to do it optimally. After all, globally distributed software development is
more difficult to manage and coordinate than co-located development and yet it is ubiquitous –
despite its difficulties.

Speed, Duration, and Calendar Efficiency

Time-to-market – and the related concept of task duration – are important areas of inquiry
because they are relatively under-studied in the disciplines of information systems (IS) and
software engineering. The IS literature has devoted some attention to the time domain but has
largely focused on subjective perceptions of time [38] rather than approaches to increasing
speed. In global software engineering/development there has been some tangential interest in
speed and some studies [22, 23] have found that multi-site software teams take longer than co-
located teams.

In our own research stream, beginning in 2003, we studied the effects of time separation
on speed. Cummings et al [11] studied global teams in the field and found that the time zone
difference between two software developers increases delay, but this increase is significant only
when team members have no overlapping work time. When there is some time overlap, such as
with synchronous hand-off, the effect on delay is negligible. Espinosa et al [15] experimented
with time zone variations in a computer lab and found that small increases in time zones
(compared to co-located) reduced speed, but as more time zone separation was added, speed
increased, suggesting that there are speed advantages to working across time zones. While these
studies may point to the potential benefits of FTS, they do not specifically address FTS work in
which the workflow is synchronized to take advantage of time zones.

In order to fully understand how FTS may affect speed and duration we analyze the
efficient usage of the entire calendar time available for production. We introduce the term
“calendar efficiency” to focus our discourse in the rest of this section and in Table 1. We define
calendar efficiency as: the percent of all of the calendar time (e.g., 24x7= 168 hours available per
week) that is used productively for work. Thus, a 40-hour work week utilizes 23.8% of the
calendar workweek (40/168). Therefore, the calendar efficiency is only 23.8% efficient,
showing that there is a lot of room for calendar efficiency improvement. One simple way to
increase calendar efficiency is to work overtime. Our usage of the term “calendar efficiency” is
analogous to Cameron’s compression or improvement factor [6] in his treatment of FTS.

In Table 1 we compute the calendar efficiency in different modes (note our assumptions
at the bottom of the table; also note that we do not introduce any notions of labor units or

Page 7 of 21

productivity yet). The key numbers appear in Column 4, beginning with a typical one-site team
(the Baseline), which uses only a dismal 17.9% of the overall calendar time after taking into
account non-task activities. This rather low figure proves the high potential for FTS. One simple
way to increase calendar efficiency is to work overtime, but the typical Overload mode
(overtime) only raises calendar efficiency to 23.8%. A very heavy Overload mode of 20 hours of
weekly overtime raises calendar efficiency to 29.8%, but is not sustainable over a long time
period because of employee burn-out.

Calendar
efficiency

net
 (task time only)

Calendar
efficiency

(task + non-task
time)

Shifts/
sites Descriptor

Hours Percent Hours Percent

Maximum
calendar
time per

week
Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

1 Baseline 30 17.9% 40 23.8% 168 hours
1 Overload (light) = + 10h/wk overtime 40 23.8% 50 29.8% 168 hours
1 Overload (heavy) = + 20h/wk overtime 50 29.8% 60 35.7% 168 hours
2 Follow The Sun 60 35.7% 80 47.6% 168 hours
2 Follow The Sun (+ overtime 10h/wk) 80 47.6% 100 59.5% 168 hours
3 Follow The Sun 90 53.6% 120 71.4% 168 hours
4 Follow The Sun 120 71.4% 120 71.4% 168 hours

Assumptions and basis for calculations
• Days per week = 7; Work days per week are only 5.
• Hours per day = 8 hours per shift except for the Overload modes.
• Overload time assumes that all additional hours are devoted to task (rather than non-task) activities.
• Task activities include all software development work including all meetings and all coordination time.
• Non-task activities = 25% of workday. These are activities such as staff recruiting, writing a memo about the

previous project, filling out time sheets, or fixing the copier. These are not coordination activities, which we
discuss later in this article. We use 25% here, building on the rules-of-thumb in the Agile community: task
activities are called “ideal working hours” and are typically estimated at 50-75% of the workday [10]

• Coordination time losses or gains are ignored in this table and will be introduced in the next section.
• Time Off. Company holidays at each site are ignored here. Generally, they represent about 6% of annual

work days across nations. Individual absenteeism, as well as individual vacations, is assumed to have
negligible effect.

• Multi-tasking is ignored.
• Clarification for FTS with 4 sites. At this level, 24 hours, or 100% task time is utilized per work day, since

non-task activities can be conducted separately and do not detract from calendar usage (i.e. 6 hours of task
time and 2 hours of non-task time per site).

Table 1: Calendar efficiency in different work modes

The significant FTS potential for calendar efficiency gains becomes evident in the bottom
rows of Table 1. An optimal FTS configuration can raise calendar efficiency as high as 71.4%.
The four-site FTS approach reduces duration by nearly four times relative to the baseline.

Page 8 of 21

At this point we begin to introduce our 12 research propositions. The first proposition is
based only on the concept of calendar efficiency. Later we introduce other factors into
subsequent propositions. In regard to calendar efficiency, our discussion suggests that:

 Proposition 1: Compared to conventional global configurations, FTS increases calendar
efficiency substantially and this efficiency increases as the number of shifts/sites increase.

Structural Considerations

In this section we motivate the following issues around FTS: phase specificity, choice of
FTS development method, and FTS product architecture. We then illustrate some of these
concepts with some exploratory observations.

Phase Specificity

There is substantial anecdotal evidence in industry that FTS can be effective in reducing
duration within specific phases (Figure 3). Testing can work well in FTS: one team searches for
bugs and documents these bugs in a database, which is then accessed and worked on by the
software team at another site many time-zones west. For example, EDS claims to do this
between Argentina and India [18]. Testing is a good fit because the hand-off is structured,
granular and – with trained staff – will usually not suffer much from miscommunication. Short
spurts of prototyping have also been successful in FTS. For example, PortalPlayer, an early
maker of embedded software for Apple’s iPod, with R&D in India and Silicon Valley, claimed
that it performed rapid prototyping using FTS [5]. These anecdotes are consistent with the
authors’ industry observations. For example, software engineers claim benefits of FTS, but these
instances of FTS are brief spurts of several days, or at most a few weeks.

Figure 3. Phase-specific activities that fit FTS displayed above a generic waterfall SDLC.

 In contrast, work that spans more than one phase may not be suitable for FTS because of

the amount of communication that is necessary to move from one phase to the next.
Consequently our next proposition:

Proposition 2: Relative to work that spans multiple SDLC phases, the work within a
particular SDLC phase is more suitable for FTS development because its specificity
allows for more structured and granular hand-offs.

Define Design Code Test Integrate

•Maintenance
•HelpdeskTest & Fix Rapid Prototyping

Page 9 of 21

Development Method
Phase specificity means that FTS is achieving only partial, limited improvements in

overall development speed. So, those who have examined FTS closely have recognized the
importance of selecting a FTS software development methodology that spans the entire
development process and supports the special needs of daily hand-offs. IBM’s classic FTS team
of the 1990s constructed a unique organization structure and process [7]. Similarly, Cameron at
EDS crafted a special methodological adaptation for FTS [6].

This leads to considering the advantages and disadvantages of linear-sequential
approaches (e.g. waterfall, incremental) versus iterative models (e.g. Unified Process, Agile UP,
Agile [2, 22, 25, 44]) and how they apply to FTS. The limitations in phase specificity, which we
just noted above, suggest that linear-sequential approaches are unlikely to be optimal for FTS
(except for work within a single phase) and therefore we should turn to iterative models. Each
iterative model includes all the activities of the SDLC phases. Hence, those models that use
longer iterations resemble the linear-sequential approaches whereas models that use short
iterations blur the borders between SDLC activities. In the latter case, FTS hand-offs contain
artifacts that cover all activities: requirements, design, code, and test.

In order to move forward, we chose a specific iterative approach. We argue that the Agile
approach is the most promising of the iterative approaches for FTS – and use it in exploratory
studies described later in this article – for the following reasons. First, it has the enabling
property of using short time-boxed iterations of 2 to 4 weeks each. The customer requirements
for each iteration are feature-based, thus all the SDLC activities are merged in each iteration, and
features are designed, tested, developed, and presented. Second, with all activities intertwined,
the Agile method introduces continuous integration that enables granular and structured daily
hand-offs. Continuous integration (while using an automated integration environment) enables
each team to develop in its own code-base in its own time period. Yet, each team maintains an
updated, testable code base to be used by the next production site. The policy of keeping the
integration green (i.e., all tests pass) at the end of the work day is common in Agile teams. It
ensures high quality hand-offs, thus it fits nicely with FTS requirements. Third, Agile inspires a
sustainable pace that fits the notion of working mostly during one’s daylight hours. Fourth, Agile
promotes exhaustive automated testing which should achieve a duration reduction.

 Also note that Denny, Gupta and colleagues have attempted to conceptually marry FTS
with elements of Agile: [12, 20].3 All of which leads to the following:

 Proposition 3: Compared to conventional global configurations, FTS is more suitable for
Agile development when some core Agile practices are used: small time-boxed iterations,
exhaustive automatic testing, continuous integration, and sustainable pace.

Product Architecture

How the software product is architected and how the work is partitioned across sites may
have an effect on the extent to which FTS helps increase speed. In general, FTS may seem
somewhat paradoxical because it violates one of the foundational principles of software
management – that software should be decomposed and that dependencies (coupling) between

3 Denny et al.’s Agile-FTS conceptual model introduces the notion of “composite persona” as a potential
collaboration model to deal with the iterations. Composite Persona (CP) is “a highly cohesive micro-team that, like a
corporation, has simultaneous properties of both individual and collective natures. […] With respect to CPs, each
site is a mirror of the other, having exactly the same CPs as each other site.”

Page 10 of 21

development groups be minimized ([34]; also see Figure 2). Once decomposed, the work may
then be assigned to different sites based in part on where expertise resides [7, 35], regardless of
locations and time zones. This type of decomposition and partitioning is unsuitable for FTS
development because there would be very little work to be handed off at the end of each day.

However, we posit that there are exceptions to the traditional architecture that manifest at
some optimum point of complexity-granularity that suits FTS. Our example is from large
complex systems that work around modification requests (MRs). Large, complex modules and
subsystems are typically developed and modified by large groups of developers, often
geographically dispersed [23]. Top priority MRs involve the development of new features or
modifications that have severe impact on client service, either in the form of new critical
functionality or repair of critical client services [16]. Because of the complex interactions of the
new and existing code in such modifications, it is best to employ small teams and develop the
code sequentially rather than to use a larger team that would need to develop the software in
parallel and then integrate the various parts. Thus, these are cases where the complexity is high,
the granularity is low, and there is a need to keep the team small in order to reduce the number of
communication links between individuals. We posit that it is precisely in these situations that
FTS can help accelerate development speed. Our propositions summarize the key points we
surfaced.

Proposition 4: FTS will be more successful for product architectures that partition the
software into smaller, relatively independent components (e.g. features, modification
requests, modules).

Proposition 5: FTS is more suitable for the development of product components than for
integration of components.

Proposition 6: FTS suitability increases when a product component is more functionally
cohesive and more well-defined.

Field Study and Preliminary Observations
In order to address the “FTS challenge” we also conducted an exploratory comparative

field study. This part of our FTS study derives from the Design Science research paradigm [24].
Here, we not only observe the phenomenon, but we work, in a utilitarian sense, on a build-
evaluate loop. Design Science seeks to create new and innovative artifacts, where the artifact can
be a physical artifact, a software algorithm or, in this case, a method/process.

Our exploratory study is described in more detail in a prior article [9] and has been
extended since then in a second phase, so here we only summarize the key parameters and
observations from the two phases. We use these preliminary observations to help develop the
conceptual aspects of FTS. (We note that Gupta and colleagues have also progressed in a
somewhat similar direction in their FTS study in a year-long comparative field study at IBM
[20]).

As we noted, evaluating and testing FTS requires making implementation choices
regarding configuration and methodology. One of these choices was to use the Agile
methodology. Our study compared teams engaged in Agile development, divided into FTS teams
and control teams.

The participants were experienced computer science and electrical engineering students
at an elite university, all between ages 20-30. Most of the students were working part time in

Page 11 of 21

software engineering roles in sophisticated firms during. The study task required 400 person-
hours per team.

The control teams could interact in any way they wished, including face-to-face and
synchronous. On the other hand, in order to simulate time zone differences, the FTS teams had
strict rules imposed on their interaction such that only asynchronous hand-offs were allowed
between the sub-teams at fixed intervals of time.4 Figure 4 depicts the actual staggered activity
of the two sub-teams of an FTS team.

 Figure 4: A slice of several days of activity from the FTS team in one of the Agile

iterations of our field study (note: number of revisions refers to number of historical
versions of source code files).

Our comparative field studies generated a number of data streams. First, we measured

duration and were also able to collect other data generated by the version control system, such as
the number of check-in operations and the number of revisions per file. Further, we examined the
electronic work logs and we analyzed students’ verbal reflections during the semester.

In our comparison studies we found that FTS teams performed roughly equally or better
than the control teams, while both teams in both projects met the project requirements with
respect to functionality and level of quality. More importantly, using our proxies for measure of
duration reduction achieved by the FTS teams, the first team achieved reduction of
approximately 10% and the second-team of approximately 50% as compared to their respective
control teams. These results show some promise for FTS with short Agile iterations.

This preliminary positive finding about speed contrasts with previous results [23] in
which distributed teams exhibited longer duration relative to co-located teams. We suggest that
our limited, qualified field study success happened because of the Agile implementation,
attributed to the tight iterations and deadlines involved.

Our analysis of the development log documentation was also revealing. In the first
comparison, when asked to reflect on the process, the FTS participants described the special way
they handed off the work at the end of their working hours. When we checked the electronic
forum we found that the level of development log documentation was markedly better for the
FTS team. In the second comparison, the FTS team wrote about 140% more documentation lines

4 In the first study there were two hand-offs per day; in the second study there was one hand-off per day.

0

5

10

15

20

Thu Fri Sun Mon Tue Wed Thu Fri Sun Mon

N
um

be
r
of
 re

vi
si
on

s

subteamA

subteamB

Page 12 of 21

as well as about 25% more messages. In summary, as would be expected with FTS, since all
other channels of (synchronous) communication were forbidden, the high volume of
documentation (e.g., commit logs) increased. In addition, we also observed better documentation
quality.

Finally, we received verbal and written comments from the study participants. Our
perception from participant feedback was that the cross-site coordination costs were not as
serious as we had anticipated. Perhaps the most interesting finding was that the time pressure
imposed on the FTS teams by the study design compelled participants to work more
productively. In other words, what the FTS participants were telling us was that they were
producing more per hour individually. This is related to the notion of time-boxing, which will be
further elaborated in the next section. We had initially assumed that individuals have equal
productivity regardless of their configuration, but we found indications that the individual
productivity of FTS participants actually increased, thus reducing task duration. In other words,
FTS teams appears to behave differently – they tend to be more disciplined and time sensitive
and when time is managed correctly this impacts outcomes positively. In fact, the Agile
movement of recent decades advocated and showed findings that support ours [27]. We build on
these findings in the next section where we compare coordination and productivity in FTS with
traditional approaches.

In summary, our field study shows that effective hand-offs are necessary for FTS to be
feasible. Furthermore, our study suggests that a work procedure that includes developing small
code components (code and test) with continuous check-in every day (as the hand-off process)
may be an effective method for a successful FTS practice. The next section further analyzes the
importance of efficient hand-offs.

Analytical Discussion

The key to learning whether or not FTS can reduce duration lies in understanding how
coordination cost and individual productivity varies when comparing co-located, FTS, and
conventional global configurations. In this section we introduce the key FTS variables we use to
analyze these issues: within-site coordination time, cross-site coordination time, and individual
productivity. We then combine these variables into an overarching equation of FTS duration
payoff to develop further propositions.

Coordination Costs

Coordination costs are at the crux of why FTS is difficult. Coordination is, by definition,
the work necessary to manage dependencies among the task activities carried out by multiple
developers [30]. For example, if there is a particular software job that requires x lines of code
and each developer can individually produce an average of y lines of fully debugged code per
hour, then a single developer could complete the job in x/y hours. Following Brooks’ logic [4],
two developers would take longer than x/2y because the two developers not only need to carry
out their individual software development assignments, but they now need to devote some time
to coordinate and integrate their work. A key FTS question is, therefore, whether these two
developers can finish the software production task faster by working in parallel and then
integrating the code at the end, or by working sequentially in shifts and handing off the work to
each other at the end of each shift.

Page 13 of 21

-

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

100% 90% 80% 70% 60%

Hand-Off Efficiency

Sp
ee

d

2

3
4

Number of Sites

1

In other words, while coordination is necessary, the time spent coordinating is time
diverted away from individual task work. Therefore, we contend that FTS will be beneficial to
duration when the total coordination costs associated with the project are minimized. For
example, if the coordination costs of integrating the work of two developers working in parallel
mode are identical to the FTS coordination costs of two developers working sequentially, then
the complete software job will take the same time to complete in either mode. Therefore, we will
show that when multiple developers are involved, then FTS will reduce duration when the
combination of within-site coordination costs (i.e. parallel work within each site) and cross-site
coordination (i.e. hand-off coordination costs) are minimized. Next, we expand on these basic
ideas.

A Simple Model of FTS Coordination and Duration

Here we offer a basic model that can help us gain insights into how key elements of work
affect duration in FTS. In our model we decompose duration into three main components: (1)
Cross-site coordination time; (2) Within-site coordination time; and (3) Personal productivity.

Cross-Site Coordination Time. These are the costs associated with hand-off activities
from site to site. Due to the difficulty of coordinating and resolving task issues [29] across
sites/shifts, the cross-site coordination cost will most likely be positive and nontrivial. For
example, the lack of task awareness beyond a person’s immediate workspace has been found to
impede effective responses to unexpected events [36]. Cross-site coordination is closely related
to the concept of handoff efficiency, which we use further below. FTS is difficult and uncommon
because the production teams are sequentially handing off work-in-progress (unfinished objects).
The production objects require daily “packaging” so that the task is understood by the next
production site. There are times when the next production site needs more information and
cannot proceed fully without clarification. When clarification is required, an entire day may
elapse because the previous site has already gone home. Sometimes misunderstandings also lead
to re-work (i.e., a type of vulnerability cost [13]).

Figure 5: Speed-up as a function of hand-
off efficiency for three FTS configurations.

Figure 5 illustrates how hand-off efficiency affects duration. We assume for the moment
that the labor resources at each site are fixed and equal and that only cross-site coordination is
needed for hand-off. For example, a hand-off efficiency of 90% means that 90% of a developer’s

Page 14 of 21

day is productive and that a total of 10% (on both the sending and receiving side) is devoted to
hand-off activities. In the 1-site configuration of Figure 5 (the baseline) there is no hand-off,
therefore duration is unaffected by hand-off efficiency. If we added one more site with an FTS
arrangement then we would have doubled the speed, but only if the hand-off efficiency was
100%. As the hand-off efficiency declines, the gains in speed by adding further sites also decline
because we are introducing cross-site coordination costs. Hence the two propositions:

Proposition 7: As hand-off efficiency increases, so does FTS development speed.
Proposition 8: Increasing the number of FTS sites that have low hand-off efficiency leads to

decreasing marginal improvements in duration speed.
We make a few more comments about assumptions and factors that influence hand-off
efficiency:
• Hand-off failures. A hand-off failure occurs when the receiving site fails to understand the

work-in-progress sent by the previous site, which is more likely when team members have
less shared knowledge [17].

• Variable hand-off time. With each added site (e.g. going from three to four sites) there is
cumulatively an increasing amount of information that needs to be conveyed and received.

• Unequal hand-off effort for sender and receiver. It takes time ta to prepare and process a
day’s work for the sender and it takes tb for the receiver to process and comprehend this
work. It is unlikely that ta = tb.

Within-Site Coordination Time. From this point we relax the simplifying assumption about
labor resources that we used in the prior subsection and in Figure 5 and assume a scenario in
which there is a fixed amount of people across sites, regardless of the number of sites. Thus, by
splitting the human resources into two or more sites, the overall impact is to reduce the number
of members in each site’s sub-team so that, per Brooks’ Law, the coordination time needed
within each site decreases because of reduced task dependency links requiring communication
[1].

Recall that the number of possible coordination links among n members in a team is
(n/2)(n-1). By splitting a team into s sites, the number of links inside each site is reduced. That
is, a team of n developers distributed across s sites will result in s sub-teams of size n/s.
Therefore, the number of possible within-site dependency links within one sub-team will be
(n/2s)(n/s-1) and the total number of links for all s sites will be s(n/2s)(n/s-1). The difference in
the total number of links between 1 site and s sites is exponential. Hence:

Proposition 9: The potential for speed gains due to reduced within-site coordination
increases exponentially for larger teams if the teams are subdivided into smaller sub-
teams across multiple FTS sites.

Naturally, the number of possible FTS sites, s, is limited by the task time per day. For
example, if the daily task time is six hours, then the maximum number of sites is four (net of
hand-off coordination time). Hence:

Proposition 10: The potential for speed gains due to reduced within-site coordination needs
in FTS increases exponentially as a team is distributed across more FTS sites, but these
gains are limited by the daily task time.

Propositions 9 and 10 are best illustrated examining Figure 6 (where the number of links are
calculated with the formula above). As the diagram shows, the number of possible within-site
dependency links drops sharply as the team is split into more sites, and this drop is more
pronounced for larger teams.

Page 15 of 21

Figure 6 – Number of Possible
Within-site Dependency Links by Site
and Team Size

Personal productivity. Up until this point we have assumed that each individual’s
productivity is fixed regardless of location and configuration, once non-task time and
coordination times are netted out. Other models [27, 28, 42] have also made similar assumptions
while in [39] productivity is a group variable that is impacted by coordination. However, based
on our exploratory field study, we argue that personal productivity may actually go up in a FTS
setup because of “time-boxing” or “daily deadlines.” Time-boxing impacts individual behavior –
of the individual programmer – by setting very strict deadlines in each iteration. The effect of
such temporal coordination on individual interaction behavior has found to have positive effects
on performance [32]. The task (or work unit) is much smaller and easier to scope out. The
individual is more focused in his/her work and gets distracted less often. Personal time-boxing
curbs perfectionist tendencies, procrastination, and does not allow individuals to over commit to
a task. Time-boxing of iterations was advocated in the older notions of Rapid Application
Development by James Martin [31] and has been one of the foundations of Agile and UP [25].
Agile approaches also set a time-box for daily completion in that all work has to be test-ready.
Hence the next proposition:

Proposition 11: Time-boxing, a by-product of any FTS configuration, spurs individual
productivity (relative to other configurations) due to added rigor, sense of deadline, and
goal orientation.
Next, we combine these three key variables and derive a basic equation that captures FTS

duration. Note that: all three variables represent a summation (Σ) of all links and all individuals;
all variables are measured in units of time (e.g., days); and there is an equal number of
individuals in each configuration. Thus, the difference in duration when going from a single-site
(co-located) configuration to a FTS configuration can be represented as:

(Eq. 1) ΔDURATION = ΔCROSS + ΔWITHIN + ΔPERSONAL
Where:

• ΔCROSS is the difference in duration due to cross-site coordination between single-
site and FTS configuration (recall from the discussion around propositions 7 and 8
that ΔCROSS will certainly be positive – i.e., duration increases due to cross-site
coordination).

0

200

400

600

800

1000

1200

1 2 3 4

Number of Sites

Po
ss

ib
le

 D
ep

en
de

nc
y

Li
nk

s 36

24

12

Team Size

Page 16 of 21

• ΔWITHIN is the difference in duration due to within-site coordination between single-
site and FTS configuration (recall from the discussion around propositions 9 and 10
that ΔWITHIN is likely to be negative – i.e., duration decreases due to lower within-
site coordination needs as sub-teams become smaller).

• ΔPERSONAL is the difference in duration resulting from changes in personal
productivity alone (recall from the discussion around proposition 11 that that
ΔPERSONAL is likely to be negative – i.e., duration decreases due to time-boxing).

It follows from Eq. 1 that task duration will be reduced when:
 (Eq. 2) ΔCROSS + ΔWITHIN + ΔPERSONAL < 0

Stated in words, Eq.2 indicates that FTS task duration reduction is accomplished when
the decrease in duration (due to lower within-site coordination and increased personal
productivity) is larger than the increase in duration due to higher cross-site coordination.

This is our central FTS duration equation. It captures the essence of our research
challenge: to parse these three variables and explore how their negative effects can be mitigated,
while accentuating the positive effects. We summarize the FTS duration payoff equation with
this final proposition:

Proposition 12: FTS is beneficial for software development speed when the reduction in
duration due to reduced within-site coordination, plus increased individual productivity
due to time-boxing, is greater than the duration increase due to increased cross-site
hand-off coordination.
As with any modeling, we have made simplifying assumptions. Here we note two more

assumptions not mentioned above, which could be relaxed, thus making the model more
complex. Notice, however, that as we relax the two assumptions, FTS becomes less attractive.
1) Personnel are interchangeable. This is an assumption common to most other models. This

assumption is not as far-fetched as one would first think; there are quite a number of software
development organizations that have set up mirror sites. A mirror site means that groups
with similar distribution of programming skills are created in time-dispersed locations
(similar to assumptions in other studies [12, 39]). Another similar assumption is made in the
concept of “Extreme (paired) Programming” (XP).

2) No absenteeism. If one of the nodes is operating at less than full capacity because of sick
days or vacation, then work may be delayed, thus affecting FTS task duration.

Comparison to other FTS models in the literature
As noted before, four recent studies conducted FTS modeling or simulation [28, 39, 41,

42]. All four studies deal to some extent with the issue of speed, while only two of them [39, 42]
inquire whether FTS is beneficial, as we have done in the present study. Interestingly, the four
studies are complementary in a number of respects: they use different methodologies,
assumptions (especially regarding coordination) and objectives. Jalote & Jain [28] set out to
understand how to optimally allocate FTS tasks to individual nodes using the methodology of
critical path and network optimization; Sooraj P. & Mohapatra [41] set out to understand how to
optimally allocate geographical sites in FTS using the methodology of a general sequential mode
model; Taweel & Brereton [42] explored FTS sensitivity to overhead and hand-offs using a
mathematical model; and finally, Setamanit, et al. [39] evaluated several global software
development configurations, including FTS, using discrete event simulation.

Page 17 of 21

Summary and Conclusions
The “FTS challenge” is to move beyond the idealized appeal of FTS toward verifiable

and consistent execution. This article is the first to comprehensively provide the conceptual
foundation for the study of FTS theory and practice. A first step is for research to apply a
consistent formal definition of FTS, as we have done. We acknowledge that it is possible that
even after concerted efforts the FTS challenge may not be achievable and we may need to
conclude that there are no achievable benefits to FTS, in which case the label may well be: the
“FTS myth.” Thus, FTS achievability is an empirical question for which a necessary first step is
a consistent definition.
 The conceptual framework we have provided is important because it helps analyze the
specific conditions under which FTS can be beneficial in reducing product development
duration. We have highlighted the importance of understanding the concepts of calendar
efficiency and hand-off efficiency in helping understand how to analyze, design and implement
successful FTS practices that can reduce task duration. We have developed several testable
propositions (summarized in Table 2) surrounding key FTS concepts, including: calendar
efficiency; development method; product architecture; hand-off efficiency; and three key
variables – within-site coordination, cross-site coordination and personal productivity. It follows
from our discussion that hand-off efficiency is paramount to FTS success in reducing software
development duration.

A limitation of our overarching analysis is that we have only investigated the effect of
FTS on speed, and not on product quality. Finally, we note that while our study of FTS refers
primarily to software work, our concepts and propositions are generally applicable to most
knowledge work that is digitized and distributed globally.

Page 18 of 21

Proposition 1: Compared to conventional global configurations, FTS increases calendar
efficiency substantially and this efficiency increases as the number of shifts/sites increase.
Proposition 2: Relative to work that spans multiple SDLC phases, the work within a particular
SDLC phase is more suitable for FTS development because its specificity allows for more
structured and granular hand-offs.
Proposition 3: Compared to conventional global configurations, FTS is more suitable for
Agile development when some core Agile practices are used: small time-boxed iterations,
exhaustive automatic testing, continuous integration, and sustainable pace.
Proposition 4: FTS will be more successful for product architectures that partition the
software into smaller, relatively independent components (e.g. features, modification requests,
modules).
Proposition 5: FTS is more suitable for the development of product components than for
integration of components.
Proposition 6: FTS suitability increases when a product component is more functionally
cohesive and more well-defined.
Proposition 7: As hand-off efficiency increases, so does FTS development speed.
Proposition 8: Increasing the number of FTS sites that have low hand-off efficiency leads to
decreasing marginal improvements in duration speed.
Proposition 9: The potential for speed gains due to reduced within-site coordination increases
exponentially for larger teams if the teams are subdivided into smaller sub-teams across
multiple FTS sites.
Proposition 10: The potential for speed gains due to reduced within-site coordination needs in
FTS increases exponentially as a team is distributed across more FTS sites, but these gains
are limited by the daily task time.
Proposition 11: Time-boxing, a by-product of any FTS configuration, spurs individual
productivity (relative to other configurations) due to added rigor, sense of deadline, and goal
orientation.
Proposition 12: FTS is beneficial for software development speed when the reduction in
duration due to reduced within-site coordination, plus increased individual productivity due to
time-boxing, is greater than the duration increase due to increased cross-site hand-off
coordination.

Table 2: Propositions for the study of FTS

References

1, Andres, H. P. & Zmud, R. W., A contingency approach to software project coordination. Journal of
Management Information Systems, 18, 3, (2002), 41-70.

2. Beck, K. Extreme Programming Explained. Reading, MA: Addison-Wesley, 2000.
3. Betts, M. 24/7 global application development? Sounds good, doesn't work, Computerworld. September

16, 2005.
4. Brooks, F.P. The Mythical Man-Month: Readings In Software Engineering. Reading, MA: Addison-

Wesley, 1975.
5. BusinessWeek, The rise of India. December 8, 2003.
6. Cameron, A., A novel approach to distributed concurrent software development using a “Follow-the-Sun”

technique. Unpublished EDS working paper, 2004.

Page 19 of 21

7. Carmel, E. Global software teams: collaborating across borders and time zones, Upper Saddle River, NJ :
Prentice Hall-PTR, 1999.

8. Carmel, E. Building your information systems from the other side of the world: how Infosys manages time
differences. MIS Quarterly Executive, 5, 1 (2006), 43-53.

9. Carmel, E., Dubinsky, Y. and Espinosa, A. Follow the sun software development: new perspectives,
conceptual foundation, and exploratory field study. 42nd Hawaii International Conference on Systems Sciences,
IEEE, 2009, 1-9.

10. Churchville, D. Agile Thinking: Leading Successful Software Projects and Teams. San Francisco:
Lulu.com, 2008.

11. Cummings, J., Espinosa, J. A. and Pickering, C. Crossing spatial and temporal boundaries in globally
distributed projects: a relational model of coordination delay. Information Systems Research, 20, 3 (2009), 420-439.

12. Denny, N.; Crk, I.; and Nadella, R.S. Agile software processes for the 24-hour knowledge factory
environment. In A. Gupta (ed.), Outsourcing and Offshoring of Professional Services: Business Optimization in a
Global Economy. Hershey, Pennsylvania: IGI Global, 2008, 287-289.

13. Espinosa, J.A. and Carmel, E. Modeling coordination costs due to time separation in global software
teams, International Workshop on Global Software Development, part of the International Conference on Software
Engineering, Portland, Oregon, USA, IEEE, 2003, 64-68.

14. Espinosa, J. A., Cummings, J. N., Wilson, J. M., & Pearce, B. M., Team boundary issues across multiple
global firms. Journal of Management Information Systems, 19, 4, (2003), 157-190.

15. Espinosa, J.A., Nan, N., and Carmel E. Do gradations of time zone separation make a difference in
performance? a first laboratory study, International Conference on Global Software Engineering, Munich,
Germany, IEEE, 2007, 12-20.

16. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., and Herbsleb, J.D. Familiarity, complexity and team
performance in geographically distributed software Development, Organization Science, 18, 4, (July-August,
2007), 613-630.

17. Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D., Team knowledge and coordination in
geographically distributed software development. Journal of Management Information Systems, 24, 1, (2007), 135-
169.

18. Godinez, V. Sunshine 24/7: As EDS' work stops in one time zone, it picks up in another. Dallas Morning
News. January 2, 2007.

19. Gorton, I. Hawryszkiewycz, L. Fung, S. Enabling software shift work with groupware: a case study,
Hawaii International Conference on Systems Sciences, IEEE, 1996, 72-81.

20. Gupta, A, The 24-Hour Knowledge Factory: can it replace the graveyard shift? Computer, 42, 1
(January, 2009), 66-73.

21. Gupta, A. Deriving mutual benefits from offshore outsourcing: The 24-Hour Knowledge Factory
scenario, Communications of the ACM, 52, 6 (June, 2009), 122-126.

22. Hazzan, O. and Dubinsky, Y., Agile Software Engineering, London: Springer-Verlag, 2008.
23. Herbsleb, J. D. and Mockus, A. An empirical study of speed and communication in globally distributed

software development, IEEE Transactions on Software Engineering, 29, 6, (June, 2003), 481-494.
24. Hevner, A., March, S. T., Park, J., and Ram, S. Design Science Research in Information Systems, MIS

Quarterly, 28, 1 (March 2004), 75-105.
25. Highsmith, J. Agile Software Development Ecosystems. Boston: Addison Wesley, 2002.
26. Hildenbrand, T. , F. Rothlauf, M. Geisser, A. Heinzl, T. Kude, A. Approaches to collaborative software

development, Workshop on Engineering Complex Distributed Systems (ECDS). Barcelona: Spain, March 4-7,
2008, 523-528.

27. Jalote, P, Palit, A., Kurien, P., Peethamber, VT. Timeboxing: a process model for iterative software
development. The Journal of Systems & Software. 70, 1-2, (February, 2004), 117-127.

28. Jalote, P. and G. Jain, Assigning tasks in a 24-h software development model, Journal of Systems and
Software. 79, 7 (2006), 904-911.

29. Kankanhalli, A., Tan, B. C. Y., & Wei, K.-K., Conflict and performance in global virtual teams. Journal
of Management Information Systems, 23, 3, (2007), 237-274.

30. Malone, T. and Crowston, K. The interdisciplinary study of coordination, ACM Computing Surveys. 26,
1 (1994) , 87-119.

31. Martin, J. Rapid Application Development, Indianapolis, IN: Macmillan, 1991.

Page 20 of 21

32. Massey, A. P., Montoya-Weiss, M. M., & Hung, Y.-T., Because time matters: Temporal coordination in
global virtual project teams. Journal of Management Information Systems, 19, 4, (2003), 129-156.

33. Millson, M.R., Raj, S.P., and Wilemon, D. A. Survey of major approaches for accelerating new product
development, Journal of Product Innovation Management, 9, 1 (March 1992), 53-69.

34. Parnas, D. On the criteria to be used in decomposing a system into modules, Communications of the
ACM. 15, 12 (1972), 1053–1058.

35. Pressman, R. Software Engineering: A Practitioner's Approach. New York: McGraw Hill, 2007.
36. Ren, Y., Kiesler, S., & Fussell, S. R., Multiple group coordination in complex and dynamic task

environments: Interruptions, coping mechanisms, and technology recommendations. Journal of Management
Information Systems, 25, 1, (2008), 105-130.

37. Rosenau, M.D. Jr. Schedule emphasis of new product development personnel, Journal of Product
Innovation Management, 6, 4 (December, 1989), 282-288.

38. Saunders, C.S., Van Slyke, C. and Vogel, D. My time or yours? Managing time visions in global virtual
teams, Academy of Management Executive, 18, 1, (2004), 19-31.

39. Setamanit, S., Wakeland, W.W., and Raffo, D. Using simulation to evaluate global software
development task allocation strategies. Software Process: Improvement and Practice, 12, 5 (September-October
2007) , 491-503.

40. Smith, P.G. and Reinersten, D.G. Developing products in half the time. New York: Van Nostrand
Reinhold, 1991.

41. Sooraj. P. and Mohapatra, P.K.J. Modeling the 24-hour software development process, Strategic
Outsourcing: An International Journal, 1, 2, (2008), 122 – 141.

42. Taweel A. and Brereton, P. Modeling Software Development across Time Zones, Information and
Software Technology, 48, 1 (January, 2006), 1-11.

43. Treinen, J.J., and S.L. Miller-Frost, Following the Sun: case studies in global software development, IBM
Systems Journal, 45, 4 (October 2006), 773 - 783.

44. Yap, M., Follow the Sun: distributed extreme programming development. Proceedings of Agile
Conference, Denver. Los Alamitos, CA: IEEE Press, 2005, pp. 218- 224.

Acknowledgements

J. Mark Johnston, a former student, helped us on early versions of this paper.

Authors

Erran Carmel. Professor Carmel's area of expertise is globalization of technology work. He
studies global software teams, offshoring of information technology, and emergence of software
industries around the world. His 1999 book Global Software Teams is a pioneering book on the
topic. His second book Offshoring Information Technology came out in 2005 and is used in
many global sourcing courses. He has written over 80 articles, reports, and manuscripts. He
consults and speaks to industry and professional groups. He is a tenured full Professor at the
Information Technology department, Kogod School of Business at American University and has
been awarded the International Business Research Professor. In 2008-2009, while writing this
paper, he was the Orkand Chaired Professor at the University of Maryland, University College.
He has been a Visiting Professor at the University of Haifa (Israel) and at University College
Dublin (Ireland).

J. Alberto Espinosa. Professor Espinosa is an Associate Professor of Information Technology at
the Kogod School of Business, American University. He received his Ph.D. in Information
Systems from the Tepper School of Business at Carnegie Mellon University. His research

Page 21 of 21

focuses on coordination and performance in global technical projects across global boundaries,
particularly spatial and temporal distance. His current research areas include coordination of
technical work across time zones and coordination in large-scale technical collaboration tasks
like enterprise architecture.

Yael Dubinsky is affiliated with the Software and Services group at the IBM Haifa Research Lab
(HRL). She is also a visiting member of the human-computer interaction research group at the
Department of Computer and Systems Science at La Sapienza, Rome, and for more than ten
years has been an instructor of project-based courses in the Department of Computer Science at
Technion - Israel Institute of Technology. Yael received her B.Sc. and M.Sc. in computer
science and PhD in science and technology education from the Technion, Israel. Her research
interests involve aspects of software engineering and information systems. Yael has significant
experience guiding agile implementation processes in both industry and academia. She has
presented her research at ICSE, Agile, and XP conferences. Her book ‘Agile Software
Engineering’, co-authored with Orit Hazzan, was published by Springer in 2008.

