CSC589 Introduction to Computer Vision Lecture 3

Gaussian Filter, Histogram Equalization
Bei Xiao

Last lecture

- Image can represented as a matrix
- Point process
- Linear filter: convolution

Take-home assignments

- Chapter 3.2 on linear filtering
- Image Histogram Equalization (pdf will be uploaded in blackboard)
- Chapter 1 of Solem (Computer vision with Python). Many useful examples
- Homework will be out this weekend and due a week.

Today's lecture

- More on linear filter, Image Sharpening
- Gaussian Filter (introduction)
- Image Histogram Equalization
- Basic image processing tutorial

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Source: D. Lowe

Original

0	0	0
0	0	1
0	0	0

Source: D. Lowe

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

Original

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{0}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

No. of the latest and			
CONTRACT OF	0	2	0
A-44 E	0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Source: D. Lowe

Image Sharpening

Take this image and blur it

Image Sharpening

What do we get if we subtract this two?

This is the left-over sharp stuff!

Let's make the image sharper?

We know: "sharp stuff + blurred = original"

Let's boost the sharp stuff a little

Let's boost the sharp stuff a little

Side by Side

Now look at the computation

- Operations
 - 1 convolution
 - 1 subtraction over the whole image
- As an equation:

$$\mathcal{I} * f + 2 (\mathcal{I} - \mathcal{I} * f)$$

Rewrite this

$$\mathcal{I} * f + 2 (\mathcal{I} - \mathcal{I} * f)$$

$$\mathcal{I} * f + 2 (\mathcal{I} * \delta - \mathcal{I} * f)$$

This is an identity filter or unit impulse

Rewrite this

$$\mathcal{I} * f + 2 (\mathcal{I} - \mathcal{I} * f)$$

$$\mathcal{I} * f + 2 (\mathcal{I} * \delta - \mathcal{I} * f)$$

$$\mathcal{I} * (f + 2\delta - 2f)$$

Now look at the computation

$$\mathcal{I}*(f+2\delta-2f)$$

Can pre-compute new filter

Operations

1 convolution

Photoshop: Unsharp Masknig

http://en.wikipedia.org/wiki/
 Unsharp_masking

Source image (left) and the sharpened image (right).

Unsharp Masking (Scipy)

- alpha = 30
- im_blur = filters.gaussian_filter(im, 3)
- im_blur2 = filters.gaussian_filter(im_blur,1)
- im_sharpened = im_blur + alpha * (im_blur im_blur2)

Unsharp Masking (Scikit)

```
from skimage import filter
from skimage import img as float
import matplotlib.pyplot as plt
unsharp strength = 0.8
blur size = 8 # Standard deviation in pixels.
# Convert to float so that negatives don't cause problems
image = img as float(data.camera())
blurred = filter.gaussian filter(image, blur size)
highpass = image - unsharp_strength * blurred
sharp = image + highpass
fig, axes = plt.subplots(ncols=2)
axes[0].imshow(image, vmin=0, vmax=1)
axes[1].imshow(sharp, vmin=0, vmax=1)
```

Unsharp Masking (MATLAB)

- a = imread('rice.png')
- imshow(a)
- b = imsharpen(a,'Radius',2, 'Amount',1);
- Imshow(b)

Your Convolution filter toolbox

- 90% of the filtering that you will do will be either
- Smoothing (or Blurring)
- High-Pass Filtering (will explain later)
- Most common filters:
- Smoothing: Gaussian
- High Pass Filtering: Derivative of Gaussian

$$K(i,j) = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

$$K(i,j) = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

$$K(i,j) = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$


```
0.003
       0.013 0.022
                     0.013
                            0.003
0.013
       0.059
              0.097
                     0.059
                            0.013
0.022
       0.097
              0.159
                     0.097
                            0.022
0.013
              0.097
                     0.059
                            0.013
       0.059
0.003
       0.013
              0.022
                     0.013
                            0.003
```

$$5 \times 5$$
, $\sigma = 1$

Gaussian filter with different σ

Original

$$\sigma = 5$$

$$\sigma = 3$$

$$\sigma = 7$$

- Remove "high-frequency" components from image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat and get same result as larger-width kernel would have.
 - Convolving two times with kernel width σ is same as convolving once with kernel width $\sigma/2$ (Can you proof this?)

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

- The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other the function of y.
- In this case, the two functions are (identical) 1D Gaussian.

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

1	2	1		1	Х	1	2	1
2	4	2	=	2				
1	2	1		1				

Perform convolution along rows:

Followed by convolution along the remaining column:

Why is separability useful?

- The process of performing a convolution requires K^2 operations per pixel
- Suppose v and h are horizontal and vertical kernels.
- K = vh^T
- 2K operations per pixel!

Image Histogram Equalization

We have a low-contrast image:

Image Histogram Equalization

We would like to increase the contrast

What is a histogram

$$p_n = \frac{\text{number of pixels with intensity } n}{\text{total number of pixels}}$$

$$n = 0, 1, ..., L - 1.$$

Image Histogram Equalization

We have a low-contrast image:

Limited image range

Image Histogram Equalization

 What we want is a histogram that covers the whole range of [0,255], but the shape must be preserved!

Ideal histogram

Mini detour of Probability Theory

PDF, density of a continuous random variable, is a function that describes the relative likelihood for this random variable to take on a given value.

Mini detour of Probability Theory

cumulative distribution function (CDF), describes the probability that a real-valued random variable X with a given probability distribution will be found to have a value less than or equal to x.

How does it work?

- Mapping one distribution to another distribution (a wider and more uniform of intensity values) so that the intensity values are spreading over the whole range
- The mapping should be the cumulative density function (CDF)

Stretching the CDF

Transform

Before

After

Next class

- Bordering effect
- Image Derivatives