CSC589 Introduction to Computer
Vision
Lecture 3

Gaussian Filter, Histogram Equalization
Bei Xiao



Last lecture

* I[mage can represented as a matrix
* Point process
e Linear filter: convolution



Take-home assignments

Chapter 3.2 on linear filtering

Image Histogram Equalization (pdf will be
uploaded in blackboard)

Chapter 1 of Solem (Computer vision with
Python). Many useful examples

Homework will be out this weekend and due a
week.



Today’s lecture

More on linear filter, Image Sharpening
Gaussian Filter (introduction)

Image Histogram Equalization

Basic image processing tutorial



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters
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Practice with linear filters

Original Shifted left
By 1 pixel




Practice with linear filters
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(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters
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Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Image Sharpening

e Take this image and blur it




Image Sharpening

 What do we get if we subtract this two?

This is the left-over sharp stuff!



Let’s make the image sharper?

I”

* We know: “sharp stuff + blurred = origina




Let’s boost the sharp stuff a little




Let’s boost the sharp stuff a little
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Side by Side




Now look at the computation

* Operations
— 1 convolution
— 1 subtraction over the whole image

* As an equation:

Txf+2(Z—Txf)



Rewrite this

Txf+2(Z—Txf)

Txf+2(Z*6—Txf)

This is an identity filter or unit impulse .




Rewrite this

ITxf+2(Z—-1xf)
ILxf+2(ZT*x0—TIx*f)

Tx(f+20—2f)



Now look at the computation

Tx(f+20—2f)

e Can pre-compute new filter
* Operations

1 convolution



Photoshop: Unsharp Masknig

e http://en.wikipedia.org/wiki/
Unsharp masking

Source image (left) and the sharpened image (right).



Unsharp Masking (Scipy)

alpha =30
im_blur = filters.gaussian_filter(im, 3)
im_blur2 = filters.gaussian_filter(im_blur,1)

im_sharpened =im_blur + alpha * (im_blur -
im_blur2)



Unsharp Masking (Scikit)

from skimaée imbort filter
from skimage import img as_float
import matplotlib.pyplot as plt

unsharp_strength = 0.8
blur_size = 8 # Standard deviation in pixels.

# Convert to float so that negatives don't cause problems
image = img _as_float(data.camera())

blurred = filter.gaussian_ filter(image, blur_size)
highpass = image - unsharp_strength * blurred

sharp = image + highpass

fig, axes = plt.subplots(ncols=2)
axes[0].imshow(image, vmin=0, vmax=1)
axes[1].imshow(sharp, vmin=0, vmax=1)



Unsharp Masking (MATLAB)

* a=imread(‘rice.png’)

* imshow(a)

* b =imsharpen(a,’Radius’,2, ‘Amount’,1);
* Imshow(b)



Your Convolution filter toolbox

90% of the filtering that you will do will be
either

Smoothing (or Blurring)

High-Pass Filtering (will explain later)
Most common filters:

Smoothing: Gaussian

High Pass Filtering: Derivative of Gaussian



Gaussian Filter

e Gaussian = normal distribution function




Gaussian Filter

e Gaussian = normal distribution function




Gaussian Filter

e Gaussian = normal distribution function




Gaussian Filter

e Gaussian = normal distribution function

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,0=1



Gaussian filter with different o

Original o=3

: -




Gaussian Filter

* Remove “high-frequency” components from
image (low-pass filter)
— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat
and get same result as larger-width kernel would
have.

— Convolving two times with kernel width o is
same as convolving once with kernel width o/2
(Can you proof this?)



Separability of the Gaussian filter

_x2+y2

G,(x,y) = 2102 exp 207

2 2
1 -5 1 -2
— —_ exp 20 —— exp 20
V2o V2mo

 The 2D Gaussian can be expressed as the product
of two functions, one a function of x and the
other the function of y.

* |n this case, the two functions are (identical) 1D
Gaussian.




Separability example

2D convolution 2> lal21xI3 15 [5
(center location only)

The filter factors 112 |1 L% |1 |2 I 1
into a product of 1D 2 1412 |=]9
filters: 11211 1
2 313 1
Perform convolution T2T11%03 15 15 1= 8
along rows:
4 |4 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman



Why is separability useful?

The process of performing a convolution
requires K2 operations per pixel

Suppose v and h are horizontal and vertical
kernels.

K=vhAT

2K operations per pixel!



Image Histogram Equalization

 We have a low-contrast image:




Image Histogram Equalization

e We would like to increase the contrast




Pn =

What is a histogram

number of pixels with intensity n

total number of pixels
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1000




Image Histogram Equalization

 We have a low-contrast image:

Limited image range



Image Histogram Equalization

* What we want is a histogram that covers the
whole range of [0,255], but the shape must be
preserved!
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Mini detour of Probability Theory

Probability density function
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The red curve is the standard normal distribution

PDF, density of a continuous random variable, is a function that describes the relative
likelihood for this random variable to take on a given value.



Mini detour of Probability Theory

Cumulative distribution function
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cumulative distribution function (CDF), describes the probability that a real-
valued random variable X with a given probability distribution will be found to
have a value less than or equal to x.
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How does it work?

* Mapping one distribution to another
distribution (a wider and more uniform of
intensity values) so that the intensity values

are spreading over the whole range

* The mapping should be the cumulative
density function (CDF)



Stretching the CDF
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Next class

* Bordering effect
* Image Derivatives



