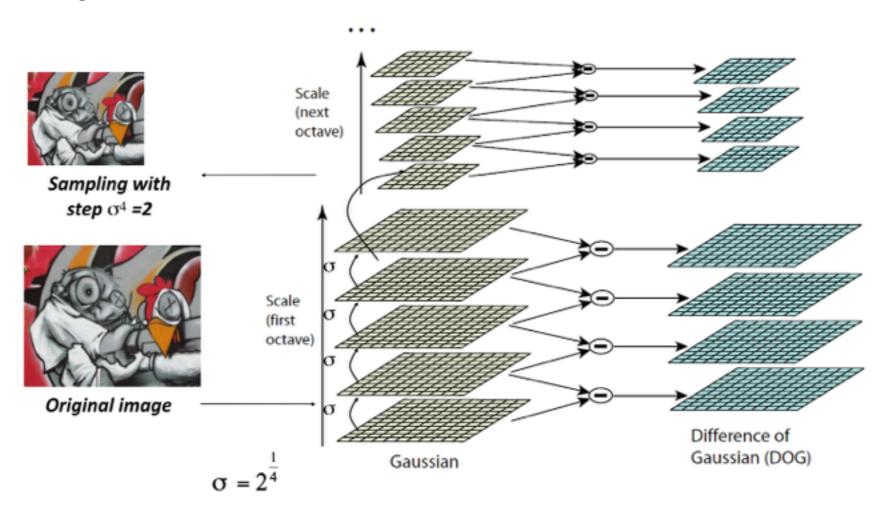
## Scale Invariant Feature Transform

1. Scale-space Extrema Detection

#### Scale-space



## Scale Invariant Feature Transform

Scale-space Extrema Detection

#### Maxima and minima of the DoG Images

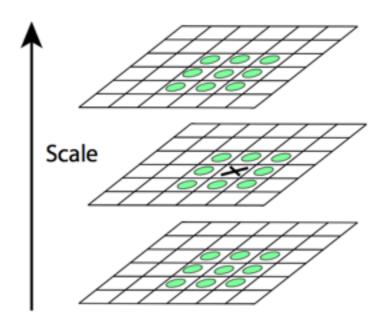


Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked with circles).

#### What kind of things do we compute histograms of?

Histograms of oriented gradients

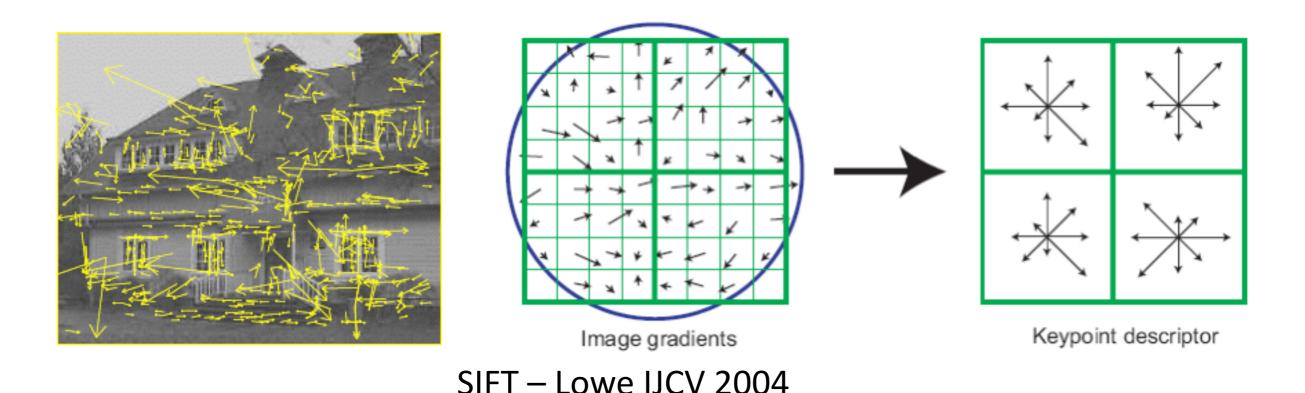
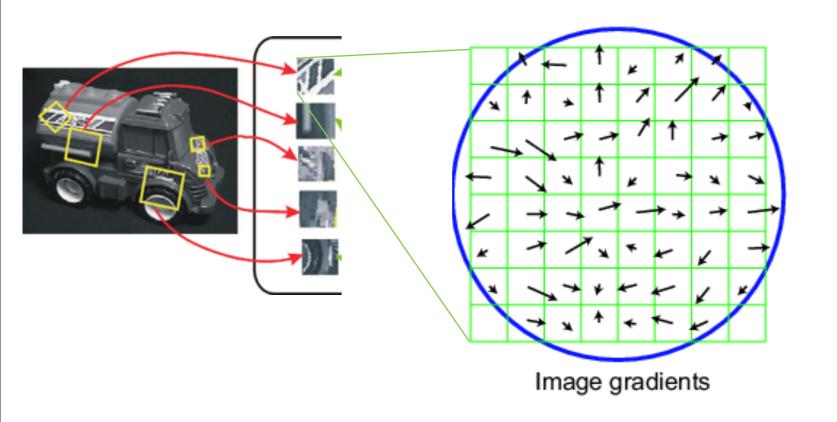


Image gradients orientation and magnitudes are sampled around key point location

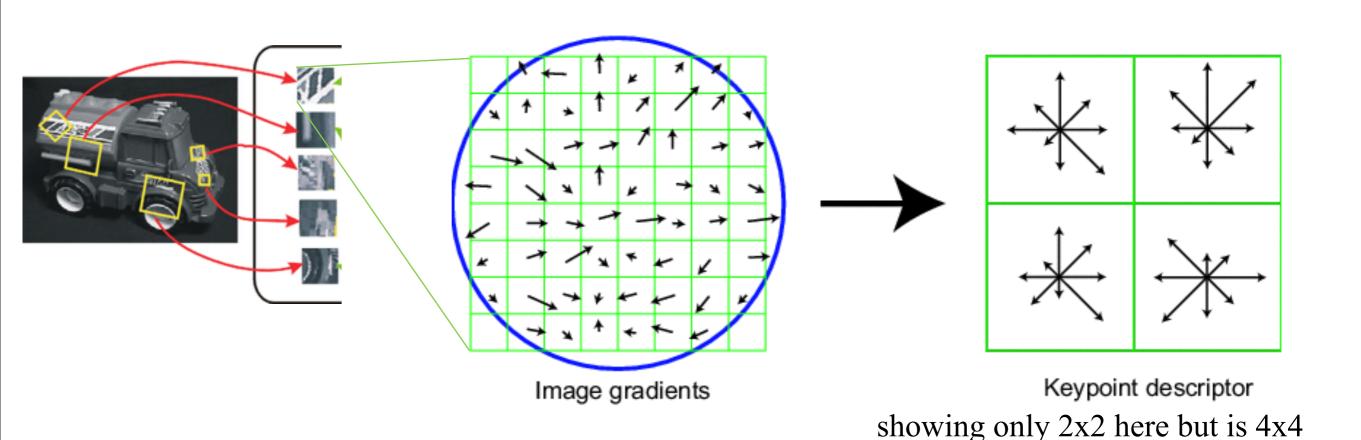
#### SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
  - resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)



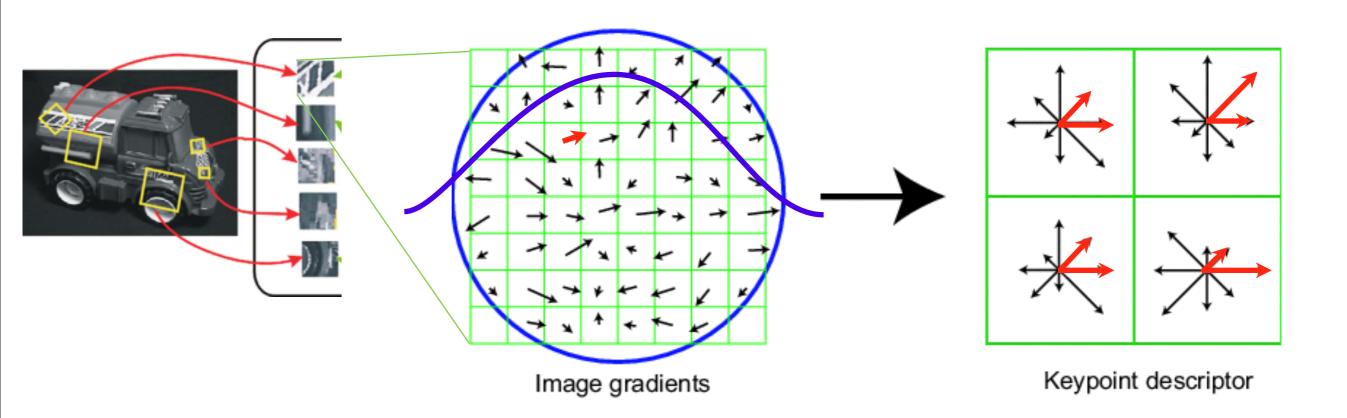
#### SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.



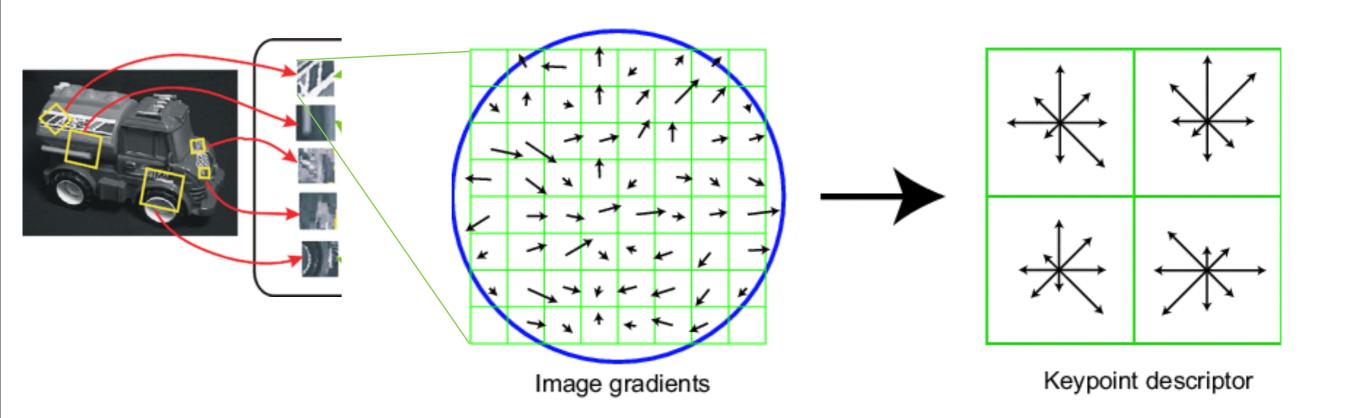
### Ensure smoothness

- Gaussian weight
- Trilinear interpolation
  - a given gradient contributes to 8 bins:
    4 in space times 2 in orientation



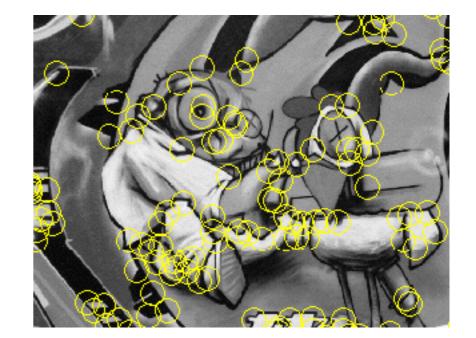
## Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
  - after normalization, clamp gradients >0.2
  - renormalize

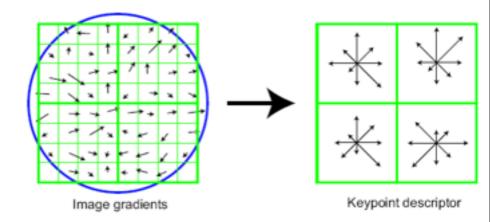


## Summary

- Keypoint detection: repeatable and distinctive
  - Corners, blobs, stable regions
  - Harris, DoG



- Descriptors: robust and selective
  - spatial histograms of orientation
  - SIFT and variants are typically good for stitching and recognition
  - But, need not stick to one

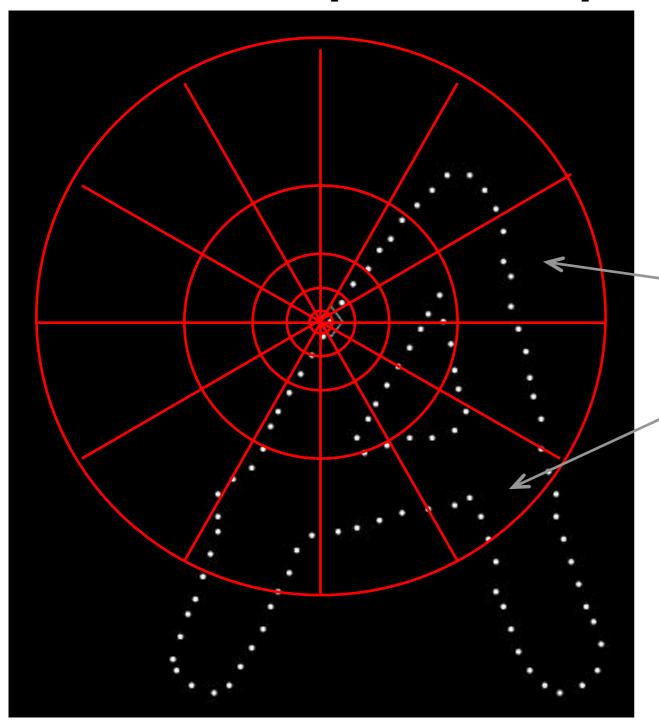


#### **Local Descriptors: Shape Context**



Figure 1. Examples of two handwritten digits.

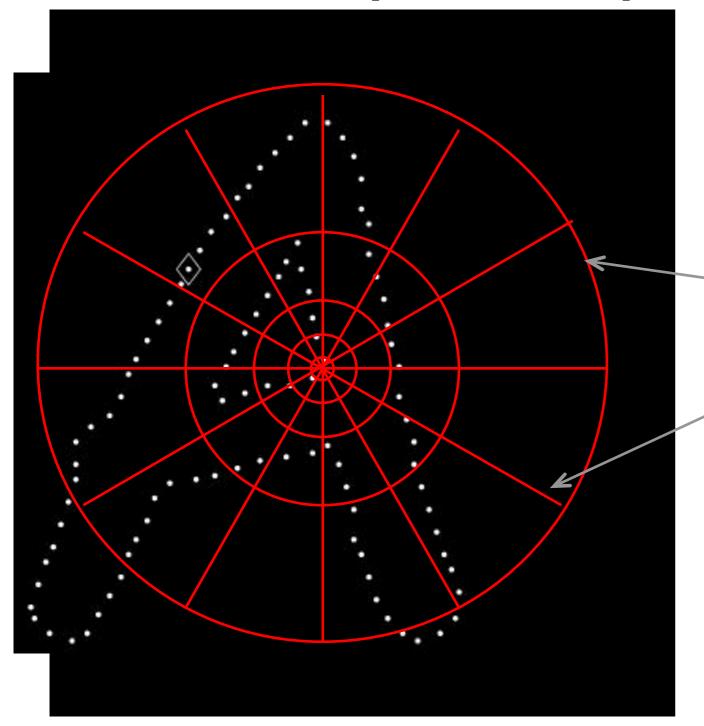
#### **Local Descriptors: Shape Context**



Count the number of points inside each bin, e.g.:

Log-polar binning: more precision for nearby points, more flexibility for farther points.

#### **Local Descriptors: Shape Context**

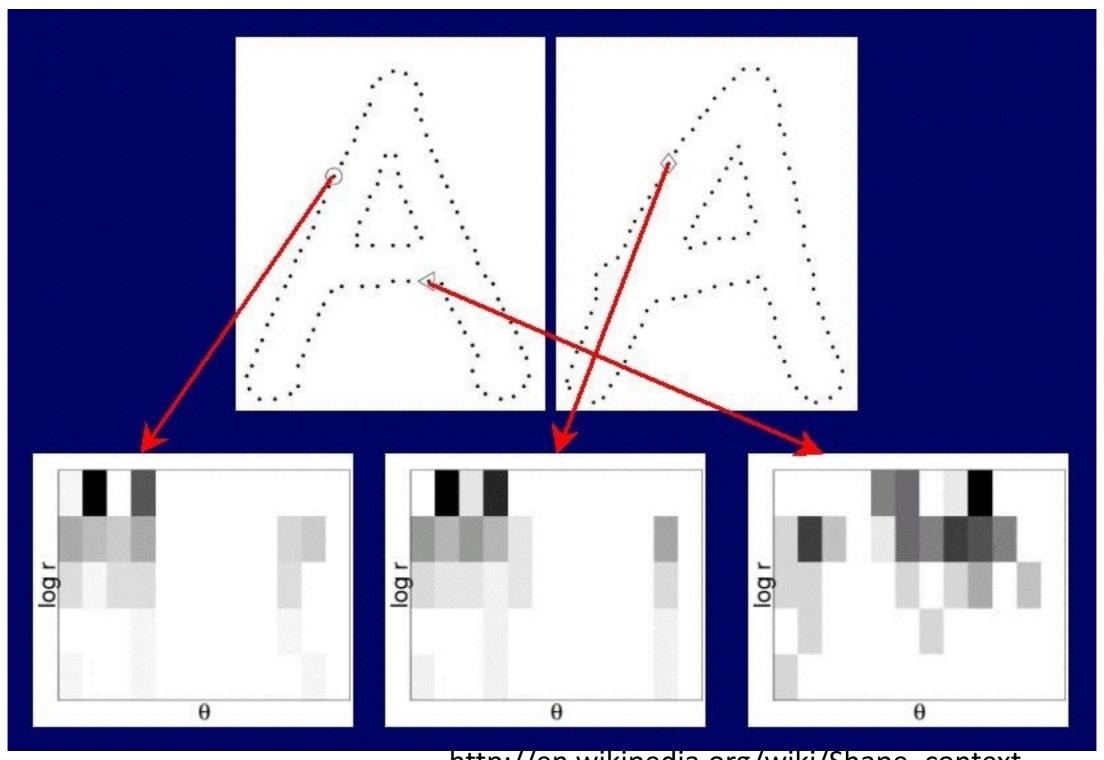


Count the number of points inside each bin, e.g.:

Count = 6

Log-polar binning: more precision for nearby points, more flexibility for farther points.

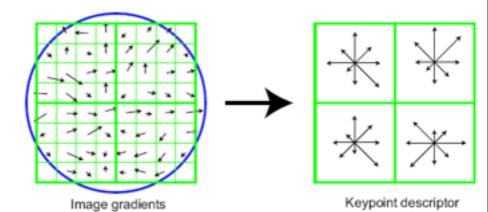
## How to find point correspondence?



http://en.wikipedia.org/wiki/Shape\_context

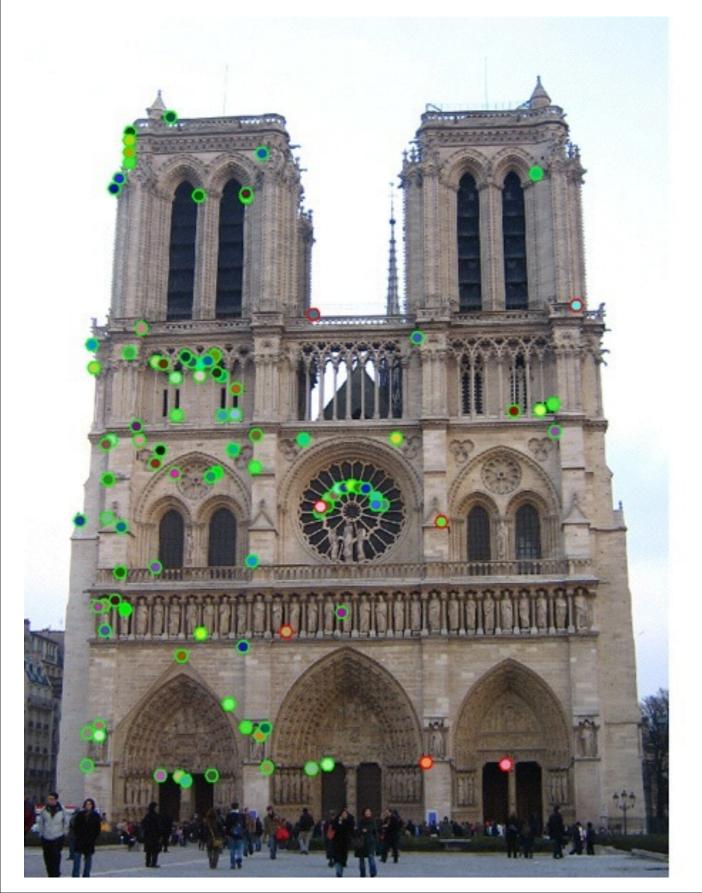
## Review: Local Descriptors

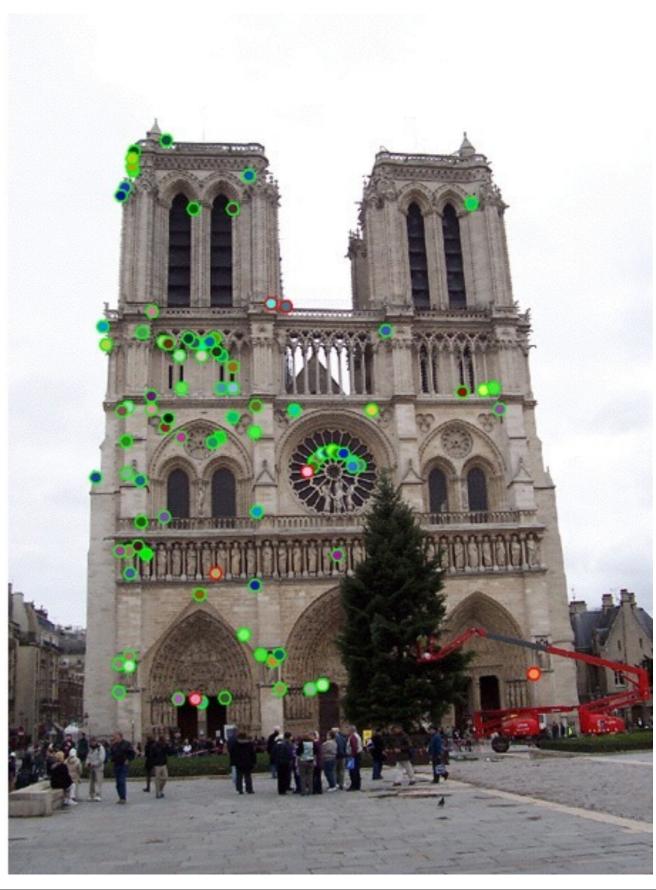
- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
  - Robust and Distinctive
  - Compact and Efficient



- Most available descriptors focus on edge/ gradient information
  - Capture texture information
  - Color rarely used

## How do we decide which features match?





## Feature matching

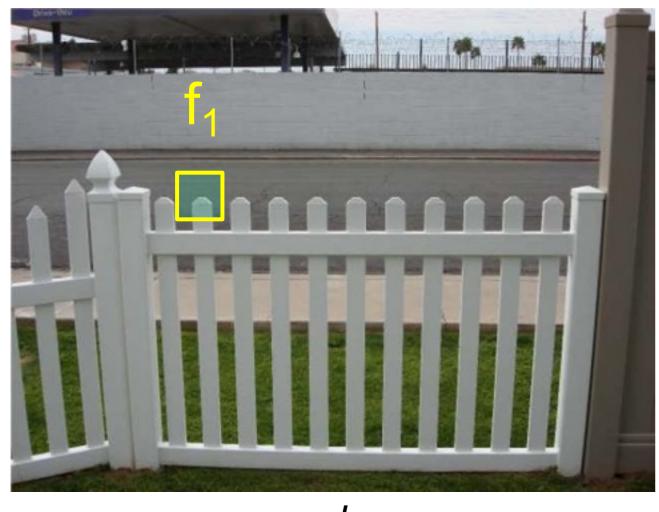
Given a feature in  $I_1$ , how to find the best match in  $I_2$ ?

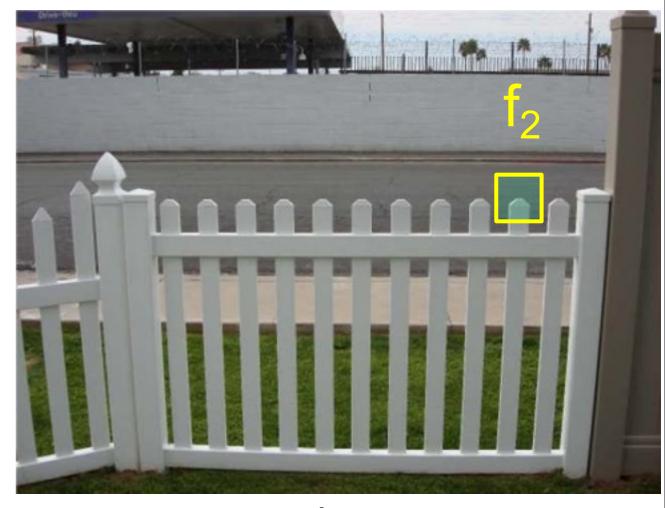
- Define distance function that compares two descriptors
- 2. Test all the features in I<sub>2</sub>, find the one with min distance

## Feature distance

How to define the difference between two features  $f_1$ ,  $f_2$ ?

- Simple approach: L<sub>2</sub> distance, | |f<sub>1</sub> f<sub>2</sub> | |
- can give good scores to ambiguous (incorrect) matches





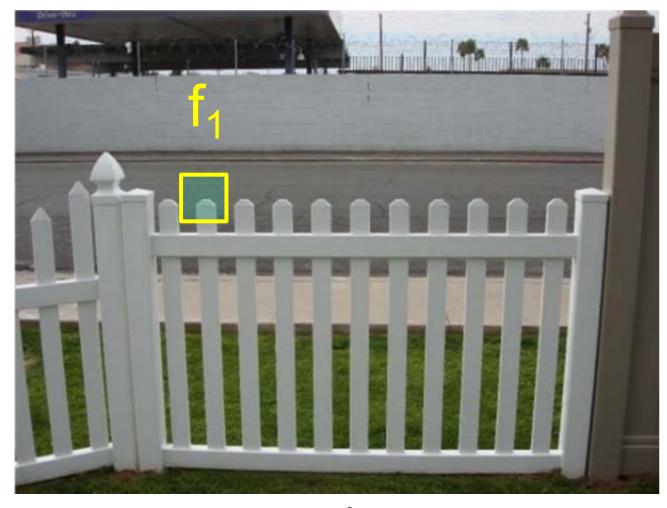
1

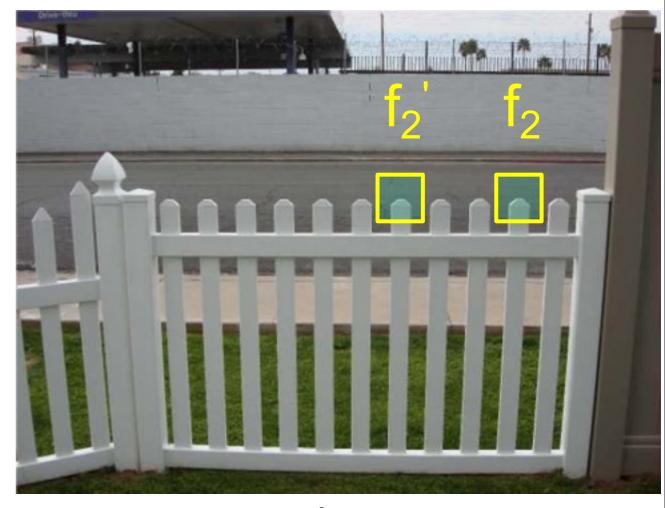
12

### Feature distance

#### How to define the difference between two features $f_1$ , $f_2$ ?

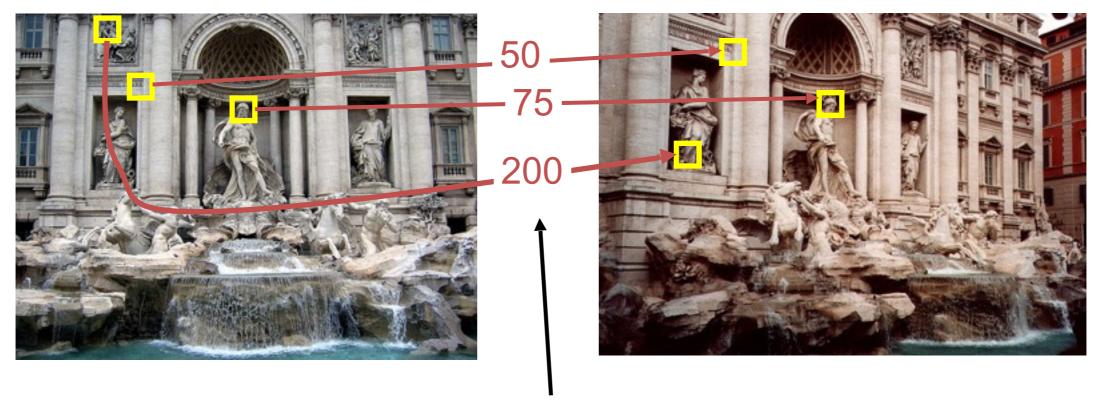
- Better approach: ratio distance = ||f<sub>1</sub> f<sub>2</sub> || / || f<sub>1</sub> f<sub>2</sub>' ||
  - f<sub>2</sub> is best SSD (summed of square distance) match to f<sub>1</sub> in I<sub>2</sub>
  - f<sub>2</sub>' is 2<sup>nd</sup> best SSD match to f<sub>1</sub> in I<sub>2</sub>
  - gives bad scores for ambiguous matches





 $I_1$ 

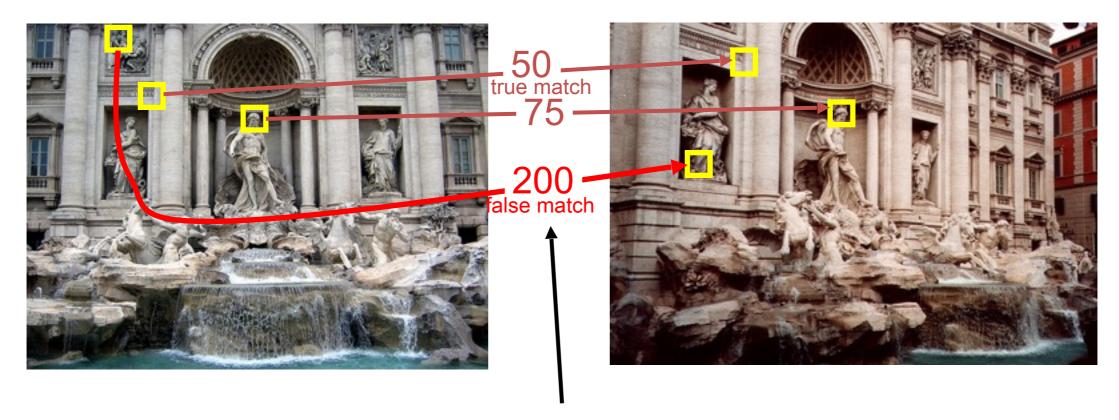
How can we measure the performance of a feature matcher?



feature distance

# True/false positives

How can we measure the performance of a feature matcher?



feature distance

#### The distance threshold affects performance

- True positives = # of detected matches that are correct
  - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
  - Suppose we want to minimize these—how to choose threshold?

# A little detour of Pattern Recognition

#### Precision and Recall

Suppose a video has 9 dogs and some cats

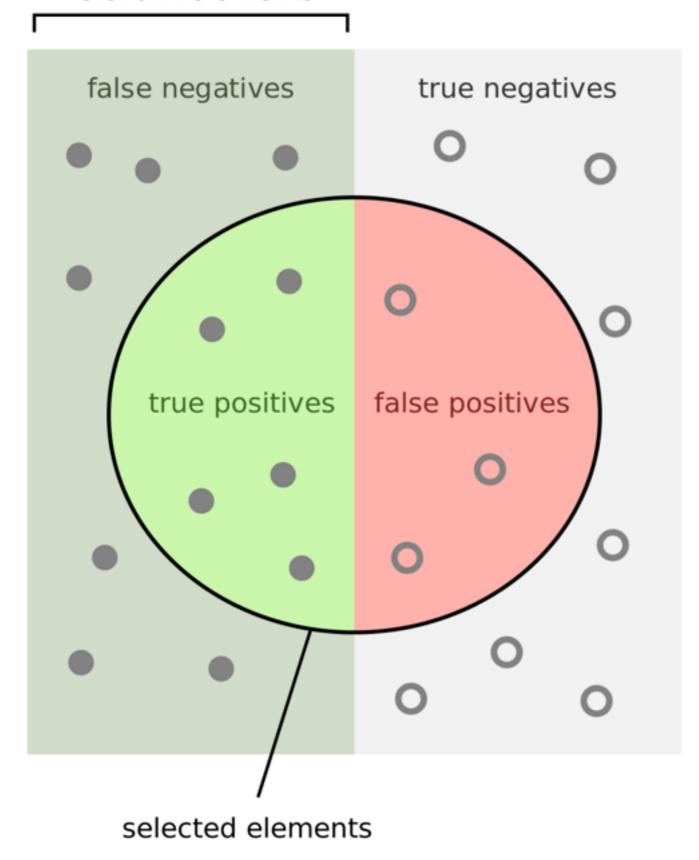
Your algorithm identified 7 dogs

However, only 4 of those are actually dogs

**Precision**: 4/7, a measure of exactness

Recall: 4/9, a measure of completeness

#### relevant elements

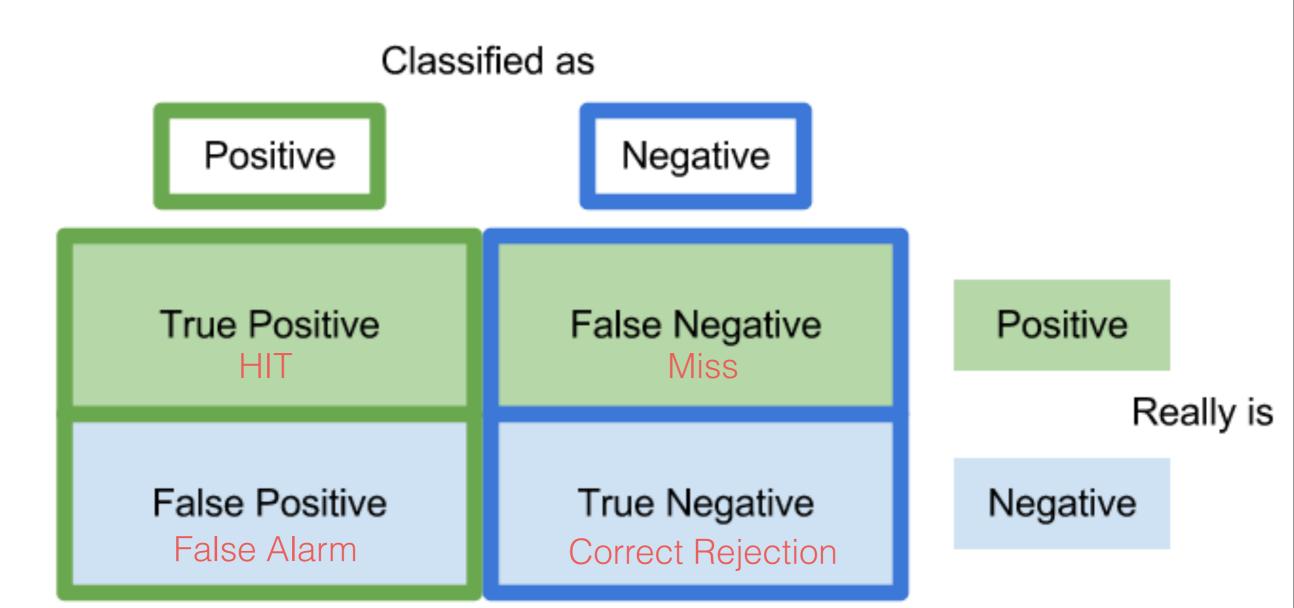


How many selected items are relevant?

How many relevant items are selected?

"Precisionrecall" by Walber - Own work. Licensed under CC BY-SA 4.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Precisionrecall.svg#mediaviewer/File:Precisionrecall.svg

### **Confusion Matrix**

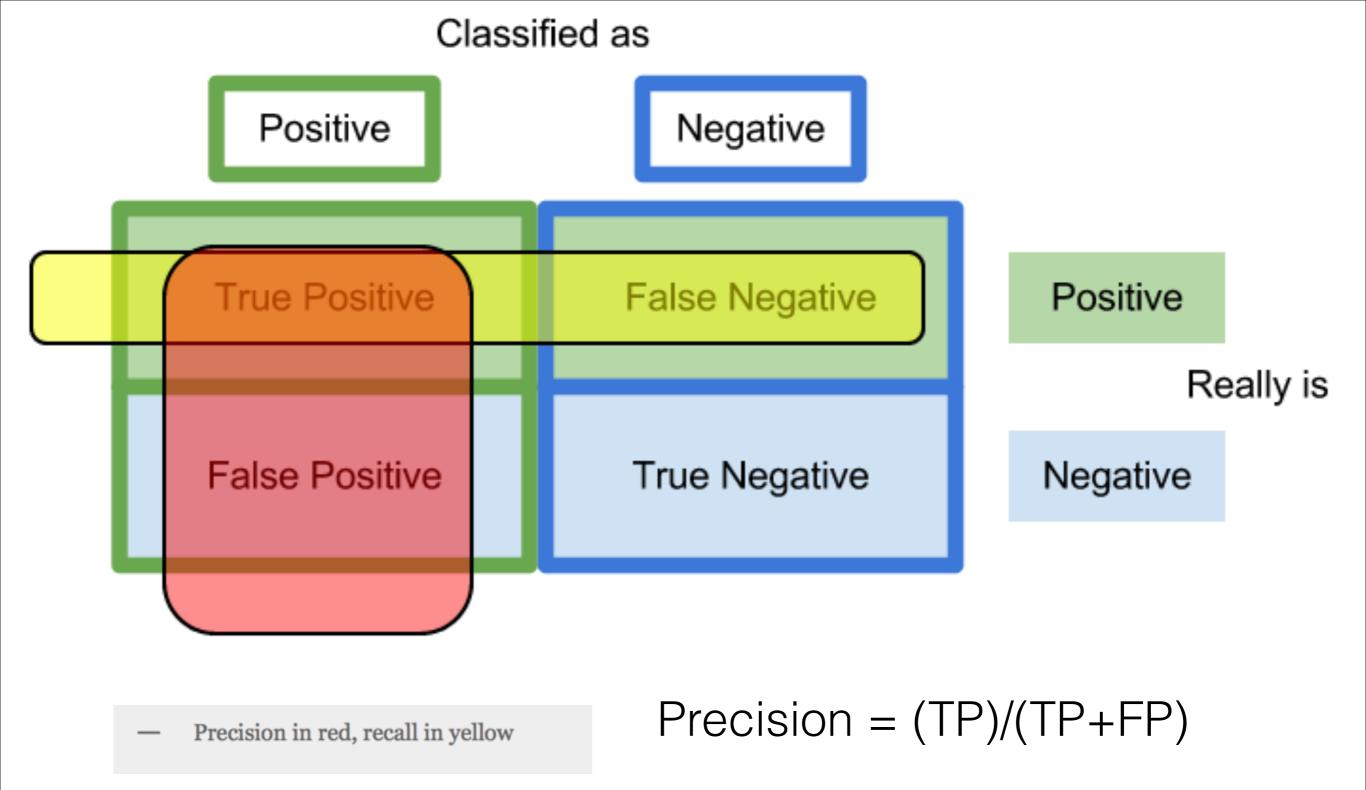


TP: number of correct matches

FN: matches that were not correctly detected

FP: proposed matches that are incorrect

TN: non matches that were correctly rejected



Recall = (TP)/(TP+FN)

## Precision vs. Recall

1000 animals, 100 dogs Algorithm finds 50 (of which 40 are dogs, 10 are cats)

TP =

FN =

**TP True Positive** 

FP False Positive

FP =

TN =

FN False Negative

**TN True Negative** 

## Precision vs. Recall

1000 animals, 100 dogs Algorithm finds 50 (of which 40 are dogs, 10 are cats)

| Total= 100 | TP =40  | FN =60  | 100  | TP True Positive FP False Positive |
|------------|---------|---------|------|------------------------------------|
| Total= 100 | FP = 10 | TN =890 | 900  | FN False Negative TN True Negative |
|            |         |         | 1000 |                                    |

Precision = TP/(FP+TP) = 40/50Recall = TP/(FN+TP) = 40/100

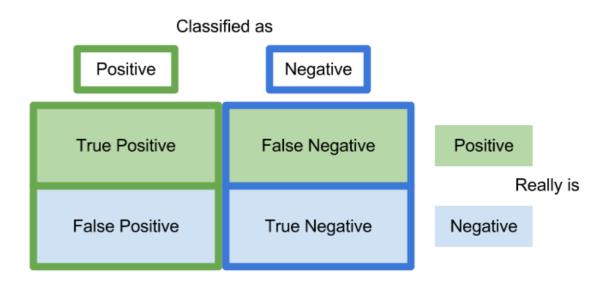
### Precision vs. Recall

```
Examples
  1000 animals, 100 dogs
  Algorithm finds 50 (of which 40 are dogs, 10 are cats)
        Precision =
        Recall =
  Algorithm finds 10 (of which 10 are dogs)
        Precision =
        Recall =
  Algorithm returns 1000 (of which 100 are dogs)
        Precision =
        Recall =
```

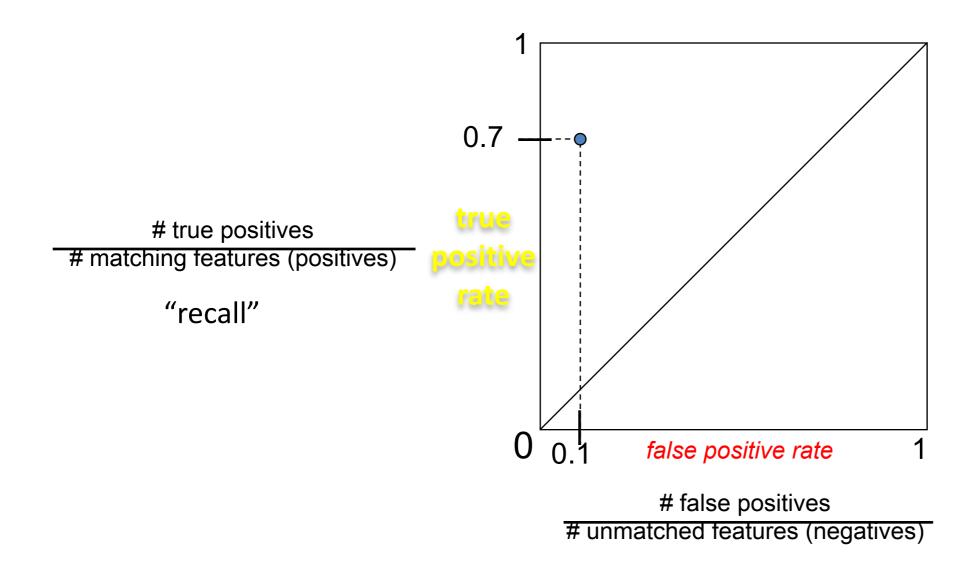
## Quiz

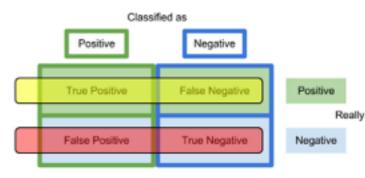
#### Assume the following:

- A database contains 80 records on a particular topic
- A search was conducted on that topic and 60 records were retrieved.
- Of the 60 records retrieved, 45 were relevant.
   What is precision and recall?
  - 1. Take a piece of paper out and construct the confusion matrix.
  - 2. Compute precision and recall

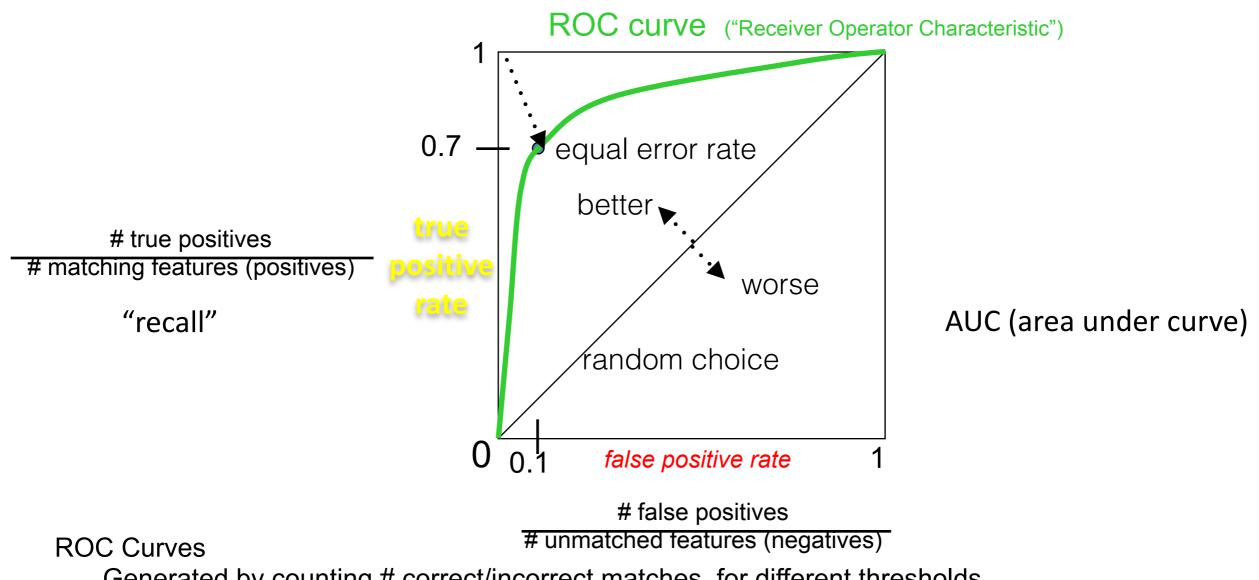


How can we measure the performance of a feature matcher?



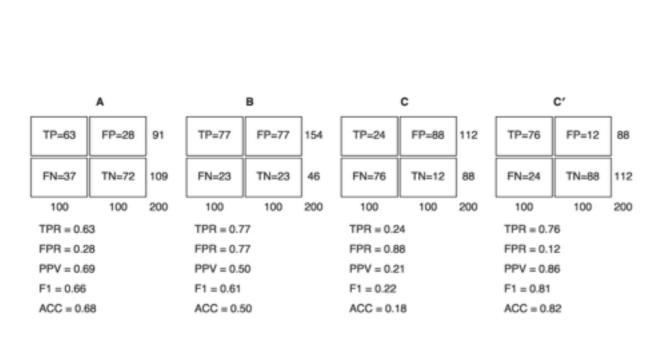


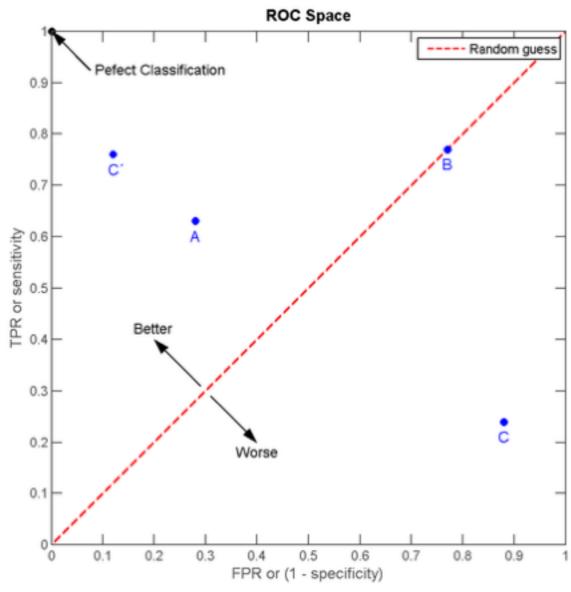
How can we measure the performance of a feature matcher?



Generated by counting # correct/incorrect matches, for different thresholds Want to maximize area under the curve (AUC)
Useful for comparing different feature matching methods

For more info: http://en.wikipedia.org/wiki/Receiver operating characteristic





http://en.wikipedia.org/wiki/Receiver\_operating\_characteristic

## More on feature detection/description



#### **Publications**

#### Region detectors

- Harris-Affine & Hessian Affine: K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest point detectors. In IJCV 1(60):63-86, 2004. PDF
- MSER: J.Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide baseline stereo from maximally stable extremal regions.
   In BMVC p. 384-393, 2002. PDF
- IBR & EBR: T.Tuytelaars and L. Van Gool, Matching widely separated views based on affine invariant regions. In IJCV 1 (59):61-85, 2004. PDF
- Salient regions: T. Kadir, A. Zisserman, and M. Brady, An affine invariant salient region detector. In ECCV p. 404-416, 2004. PDF

#### Region descriptors

SIFT: D. Lowe, Distinctive image features from scale invariant keypoints. In IJCV 2(60):91-110, 2004. PDF

#### Performance evaluation

- K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectors. Technical Report, accepted to IJCV. PDF
- K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors. Technical Report, accepted to PAMI. PDF

## 3D Reconstruction



Internet Photos ("Colosseum")

Reconstructed 3D cameras and points

# Object recognition (David Lowe)



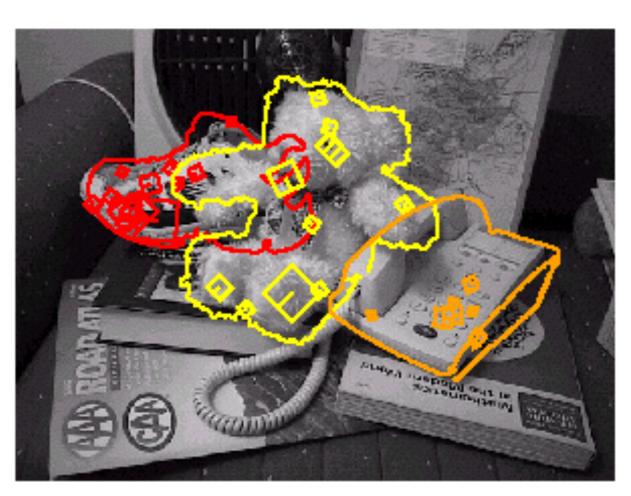












#### Sony Aibo

#### SIFT usage:

- Recognize charging station
- Communicate with visual cards
- Teach object recognition

#### AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations



## Available at a web site near you...

- For most local feature detectors, executables are available online:
  - http://www.robots.ox.ac.uk/~vgg/research/affine
  - <a href="http://www.cs.ubc.ca/~lowe/keypoints/">http://www.cs.ubc.ca/~lowe/keypoints/</a>
  - <a href="http://www.vision.ee.ethz.ch/~surf">http://www.vision.ee.ethz.ch/~surf</a>

## SIFT feature implementation

```
import cv2
import numpy as np
```

```
img = cv2.imread('home.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
```

```
sift = cv2.SIFT()
kp = sift.detect(gray,None)
img=cv2.drawKeypoints(gray,kp)
```

cv2.imwrite('sift\_keypoints.jpg',img)

# Questions?

# Image alignment

