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Finding the “same” thing across images

Categories pind a bottle: Instances Find these two objects

Can’t do Can nail 1t
unless you do not
care about few errors...



Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affi ne transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.



But where 1s that point?



M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003




Uses for feature point detectors and
descriptors in computer vision and
graphics.

— Image alignment and building panoramas
— 3D reconstruction

— Motion tracking

— Object recognition

— Indexing and database retrieval

— Robot navigation

— ... other



Preview

* Detector: detect same scene points independently 1n
both 1images

* Descriptor: encode local neighboring window

— Note how scale & rotation of window are the same in both
image (but computed independently)

* Correspondence: find most similar descriptor in other
image

Note: here viewpoint is different,
not panorama (they show off)



Outline

* Feature point detection
— Harris corner detector

— finding a characteristic scale: DoG or
Laplacian of Gaussian

* Local image description
— SIFT features




Last lecture: Scale invariance

* The problem: how do we choose corresponding
circles independently 1n each 1mage?

* Do objects in the 1mage have a characteristic
scale that we can 1dentify?




Laplacian of Gaussian for selection of
characteristic scale

1ttp://www.robots.ox.ac.uk/~vgg/research/affine/det eval files/mikolajczyk 1jcv2004.pdf
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digure 1. Example of characteristic scales. The top row shows two images taken with different focal lengths. The bottom row shows the
esponse Fuoem(X, 0,) over scales where Fioq 1S the normalized LoG (cf. Eq. (3)). The characteristic scales are 10.1 and 3.89 for the left and
ight image, respectively. The ratio of scales corresponds to the scale factor (2.5) between the two images. The radius of displayed regions in
he top row is equal to 3 times the characteristic scale.
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Scale Invariant Detection

* Functions for determining scale _

Kernels:

02+

_ o‘ |

(Laplacian: 2nd derivative of Gaussian) 0

01+

_ 02+

(Difference of Gaussians)
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where Gaussian 1

Note: both kernels are invariant to
scale and rotation




Scale-space example: 3 bumps of different widths.

bumps: 5,9, 15 wide
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Gaussian and difference-of-Gaussian filters




The bumps, filtered by difference-of-
Gaussian filters

bumps: 5, 9, 15 wide
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The bumps, filtered by difference-of-
Gaussian filters

bumps: 5, 9, 15 wide

cross-sections along red lines plotted next sbie
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Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe



DoG — Efficient Computation

 Computation in Gaussian scale pyramid
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!| Building a Scale Space
1

G X, akO' = . e-(-fz*,\': )/ 2k*c?
S5t : 2n( ko).

= Difference of
o Gaussian Gaussian (DOG)



Results: D_ifference-of—Gaussian
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K. Grauman, B. Leibe



Outline

* Local image description
— SIFT features




Feature descriptors

We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point, find
similar descriptors between the two images



Invariance vs. discriminability

* |nvariance:

— Descriptor shouldn’t change even if image is
transformed

* Discriminability:
— Descriptor should be highly unique for each point



Invariance

* Most feature descriptors are designed to be
Invariant to

— Translation, 2D rotation, scale

* They can usually also handle

— Limited 3D rotations (SIFT works up to about 60 degrees)
— Limited affine transformations (some are fully affine invariant)

— Limited illumination/contrast changes



How to achieve invariance

Need both of the following:
1. Make sure your detector is invariant

2. Design an invariant feature descriptor
— Simplest descriptor: a single O

e What’s this invariant to?

— Next simplest descriptor: a square window of pixels

e What’s this invariant to?

— Let’s look at some better approaches...



Rotation invariance for feature descriptors

* Find dominant orientation of the image patch

— This is given by x...., the eigenvector of M corresponding to A, (the

max’ Mmax

larger eigenvalue)
— Rotate the patch according to this angle

Figure by Matthew Brown



Multiscale Oriented PatcheS descriptor

Take 40x40 square window
around detected feature

— Scale to 1/5 size (using
prefiltering)

— Rotate to horizontal

— Sample 8x8 square window
centered at feature

— Intensity normalize the
window by subtracting the
mean, dividing by the
standard deviation in the
window

You might use MOPS in your project



Image Representations: Histograms
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Global histogram

*Represent distribution of features

—Color, texture, depth, ...



Orientation Normalization
* Compute orientation histogram [Lowe, SIFT, 1999]
* Select dominant orientation
* Normalize: rotate to fixed orientation




What kind of things do we compute histograms
of?

Image gradients Keypoint descriptor

SIFT — Lowe IJCV 2004



Scale Invariant Feature Transform

Basic idea:

e Take 16x16 square window around detected feature (feature detected using DoG)
e Compute gradient orientation for each pixel

e Throw out weak edges (threshold gradient magnitude)
e C(Create histogram of surviving edge orientations
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angle histogram

Image gradients

Adapted from slide by David Lowe



SIFT vector formation

 Computed on rotated and scaled version of window
according to computed orientation & scale

— resample the window

* Based on gradients weighted by a Gaussian of variance
1.5 times the window (for smooth falloff)

Image gradients



SIFT vector formation

* 4x4 array of gradient orientation histogram weighted by
magnitude

e 8 orientations x 4x4 array = 128 dimensions

* Motivation: some sensitivity to spatial layout, but not too
much
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Image gradients Keypoint descriptor
showing only 2x2 here but 1s 4x4




!| Orientation Assignment

= [0 achieve rotation invariance

= Compute central derivatives, gradient
magnitude and direction of L (smooth
Image) at the scale of key point (x,y)

m(x.y) = \/(l,(.r-o- l.y) — L(z-1.9))*+ (L(z.y+1) — L(z.y — 1))?

O(x.y)=tan " *((L(z.y+1) = L(z.y — 1)) /(L(z + 1.yR— L(z — 1.7)))



Construction of SIFT vector
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http://programmingcomputervision.com/downloads/
ProgrammingComputerVision CCdraft.pdf



http://programmingcomputervision.com/downloads/ProgrammingComputerVision_CCdraft.pdf

SIFT features extracted

(b)

Figure 2.4: An example of extracting SIFT features for an image. (a) SIFT features (b)
SIFT features shown with circle indicating the scale of the feature (c) Harris points for
the same image for comparison.

http://programmingcomputervision.com/downloads/
ProgrammingComputerVision CCdraft.pdf



http://programmingcomputervision.com/downloads/ProgrammingComputerVision_CCdraft.pdf

Properties of SIFT

Extraordinarily robust matching technique
— Can handle changes in viewpoint
 Up to about 60 degree out of plane rotation
— Can handle significant changes in illumination
 Sometimes even day vs. night (below)
— Fast and efficient—can run in real time

— Python Implementation is here: http://www.maths.lth.se/matematiklth/personal/
solem/downloads/sift.py

— MATLAB implementation: http://www.robots.ox.ac.uk/~vedaldi/code/sift.html

L g



http://www.maths.lth.se/matematiklth/personal/solem/downloads/sift.py
http://www.robots.ox.ac.uk/~vedaldi/code/sift.html

Local Descriptors: SURF

[Bay, ECCV’06], [Cornelis, CVGPU’08]

Fast approximation of SIFT idea
Efficient computation (Haar wavelets)
=> 6 times faster than SIFT
Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz
(detector + descriptor, 640x480 img)

http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe



Other descriptors

* HOG: Histogram of Gradients (HOG)
— Dalal/Triggs
— Sliding window, pedestrian detection

* FREAK: Fast Retina Keypoint
— Perceptually motivated




Keypoint detection: repeatable and
distinctive

— Corners, blobs, stable regions
— Harris, DoG

Descriptors: robust and selective
— spatial histograms of orientation

— SIFT and variants are typically good C 4 ”\ AQ 4(
for stitching and recognition ( EEGEDE ) —> |3
— But, need not stick to one ASHRUSSS4 ;

Image gradients Keypaint descriptor



Things to remember

* Keypoint detection: repeatable and
distinctive

— Corners, blobs, stable regions
— Harris, DoG

* Descriptors: robust and selective

— spatial histograms of orientation
— SIFT
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| earn more about SIFT

http://en.wikipedia.org/wiki/Scale-
invariant_feature_transtorm

Original paper (cited 29089 times):
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
Chapter 2. Solem, Python implementation

Point Feature Data set:

http://roboimagedata.compute.dtu.dk/?page_id=24


http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://roboimagedata.compute.dtu.dk/?page_id=24

