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A Dbit of mid-term review

Questions: What is an unsharp mask? Is it a linear filter?

Junsharp — f(l — ’7hblur x f)
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A Dbit of mid-term review

Questions: What is Ditference of Gaussians” Laplacian kernel?
What are their relationships”? Can you plot the functions?

An example of laplacian kernel

0

1

0

1

4

1

1

0

1

0

1

What happens if you apply the above kernel to images”
What is the difference between laplacian and sobel filter in
terms of edge detection?



Original Laplacian
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A Dbit of mid-term review

Questions: What is Ditference of Gaussians” Laplacian kernel?
What are their relationships”? Can you plot the functions?



* The Laplacian of Gaussian (LoG)

a 2g a zg (very similar to a Difference of Gaussians (DoG) —i.e. a
Vzg — 4 Gaussian minus a slightly smaller Gaussian)




A Dbit of mid-term review

Fourier Transform of a sinusoid IS a Sinusoid

s /. OAI/\ [
\/x A/‘co \/x

s(x) o(x)

Questions: What are Fourier transform of Gaussian, Box Filter,
Laplacian functions?

Page 137 of your text book



A Dbit of mid-term review

Name Signal Transform
impulse - l - d(z) o 1
shifted |
i:npulse o(z — u) < e v |
box filter | box(z/a) - asinclaw) /||
tent LN tent(z/a) o asinc? (aw) I
| /23 -
Gussian _/|\_  G@mo) o FCwe) )\
Laplacian - 22 _ 1\G(z: — V2% 2030, g1
of Gaussian  ~~ /14~ (5: - 32)G@0) & o wGwo™) y
1, .
Gabor il cos(wox)G(zi0) YIAGwxweio™t) L]
unsharp | (1+7)é(z) y (1+7)-
mask —,I_ - vG(z;0) - V2IG(wio™t)
windowed | rcos(z/(aW)) T
sinc e — sinc(z/a) <> (see Figure 3.29) |

Page 137 of your text book



A Dbit of mid-term review

Name Kernel Transform Plot
l [ T T ’ L)

box-3 4 111 . 1 ;(1 + 2(‘05\»')

box-5 , 1117111 | 1(1+2cosw + 2cos 2w)
: —

lincar i 1]2]1 ;]g(l + cosw)

binomial 16 1 . 4 , 6|4 ‘ 1 i(l + cosw)? -
Sobel 2| 1 .0 1 sinw

IS Tal 3] |
comer 2 —1]2 . -1 .i,(l — COS W) -

Table 3.3 Fourier transforms of the separable kernels shown in Figure 3.14,

Page 137 of your text book



This section: correspondence and alighment

* Correspondence: matching points, patches,
edges, or regions across images




Local measure of feature uniqueness

e How does the window change when you shift it?

* Shifting the window in any direction causes a big

change

“flat” region:
no change in all
directions

“edge”:
no change along the
edge direction

\
/ N\
“corner”:

significant change in
all directions

Credit: S. Seitz, D. Frolova, D. Simakov



Review: Harris corner detector By

* Approximate distinctiveness by local
auto-correlation.

* Approximate local auto-correlation by
second moment matrix

* Quantify distinctiveness (or cornerness)
as function of the eigenvalues of the
second moment matrix.

* But we don’t actually need to
compute the eigenvalues by
using the determinant and trace
of the second moment matrix.




Corners as distinctive interest points

[l 11
M= x" X x"y
E I, 11,

2 X 2 matrix of image derivatives (averaged in
neighborhood of a point)

=

Be

Notation:




Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.




Quick eigenvalue/eigenvector review

The eigenvectors of a matrix A are the vectors x that satisfy:

Axr = \x

The scalar A is the eigenvalue corresponding to x
— The eigenvalues are found by solving:

det(A— M) =0

— Inourcase, A=H s a zx2z matrix, SO we nave

]'2,11 — A ]'2.12

det [ ho By — \ } =0

— The solution:

once vou knoMt = & | (a1 + ha) VAhishor + (hay — has)?

h/ll — A }?,12 XL — 0
ha1 hoo — A y |




Quick eigenvalue/eigenvector review

* The solution:

—

—

At = 5 |(h11 + haa) = \/4h12h21 + (h11 — hag)”

Once you know A, you find the eigenvectors by solving

hll — A hlg XL — 0
ha1 hoa — A y |

Symmetric, square matrix: eigenvectors are mutually orthogonal




Corner detection: the math

A B || u
[uv] B C v

\ J
|

H

FE(u,v)

Xmin

H-Lma.x — )\ma.xivma,x

Xmax

H-L'min — )\minchin

Eigenvalues and eigenvectors of H
e Define shift directions with the smallest and largest change in error

e X, =direction of largest increase in E

e M., =amount of increase in direction x,, .,
e X, = direction of smallest increase in E

e M., =amount of increase in direction x_,.,



HaITIS DeteCtOr [Harris88]

e Second moment matrix

2
]x (OD) ]x]y(OD) 1 Image

11,0, I,(0,) derivatives
(optionally, blur first)

w(o,,0,)=g(,)*

2. Square of
derivatives
detM =AM,
traceM =\, + A
M+ 3. Gaussian
filter g(o))

4. Cornerness function — both eigenvalues are strong

har = det[u(o ;.0 ,)]-aftrace(u(o,,0 )" 1=
gD -[gU 1) —alg(I)+g(I)T

5. Non-maxima suppression




So far: can localize in x-y, but not scale




Scale Space

For an given image f(x,y)

1 _ 2.2
g(z,y;t) = ﬁe (z=+y=)/2t

!

Scale-space representation L(;r, Y t) at scale Scale-space representation L(.r, Y. t) at scale
{ = (). corresponding to the original image f t=1 I (
at) =gt * f(-,-)

p——

| |

Scale-space representation L(J;, Y. t) at scale Scale-space representation L(l.‘. Y t) at scale

t=4 t =16



Automatic scale selection

Lindeberg et al.,
1996




Automatic scale selection
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Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection




Automatic scale selection

Normalize: rescale to fixed size




Implementation

* |nstead of computing f for larger and larger
windows, we can implement using a fixed
window size with a Gaussian pyramid

(sometimes need to create in-between
levels, e.g. a %-size image)



What Is A Useful Signature Function?

e Difference-of-Gaussian = “blob” detector

K. Grauman, B. Leibe



Laplacian of Gaussian

 “Blob” detector L

maximum

* Find maxima and minima of LoG operator in
space and scale



Characteristic scale

e \We define the characteristic scale as the scale
that produces peak of Laplacian response

2000

1500} - - - - - g o i }f-~r“ ..... L)
. : = ;

i 1000 ....f.....;....;....{} ...... Lowias Z ......

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.



http://www.nada.kth.se/cvap/abstracts/cvap198.html

Scale-space blob detector: Example




Scale-space blob detector: Example

sigma = 11.9912



Example

Scale-space blob detector




DoG — Efficient Computation

* Computation in Gaussian scale pyramid

step o4 =2

Scale
(first
octave)

1

Original image —9 =2"

Difference of
Gaussian Gaussian (DOG)

K. Grauman, B. Leibe



Find local maxima in position-scale space of Difference-of-Gaussian

K. Grauman, B. Leibe (XI yl



Results: Difference-of-Gaussian

K. Grauman, B. Leibe



