CSC589 Introduction to Computer
Vision
Lecture 8

Applications of Fourier Transform,
Sampling

Bei Xiao



Last Lecture

* Fourier transform and frequency domain
— Fourier transformation in 1d signal
— Fourier transform of images

— Fourier transform in Python

 Reminder: Read your text book 3.4.
Homework 2 is out and will be Due on
Thursday, Feb 19t" (extended). Start early!




Today’s lecture

Review of Fourier Transform

~iltering in Frequency domain

Pyvthon exercises Here is a useful tutorial on fft
with numpy:

http://docs.opencv.org/trunk/doc/

py tutorials/py imgproc/py transforms/
py fourier transform/

py fourier transform.html




Next Lecture: Guest Lecture

* Dr. Katerina Fragkiadaki:

* “Video Segmentation and Multi-object
tracking in the Era of Deep Learning!”

* She will also give a talk on video
understanding at 4-5pm on Thursday.



MATLAB or Python

We can choose again for the main tool for the rest of the
course.

Python appear to be difficult, have a sharper learning
curve, butitis a general purpose language.

MATLAB has much more tutorials online (especially for
image processing) and easier user interface. However, you
have to pay $100 for a student’ license or access through
university’s VPN with limited license.

You can try it out and run some demo codes ( | will upload)
and we can vote again. | posted a survey on blackboard.

For now, we continue with demos in Python.
Homework 2 can be done either with Python or MATLAB.



Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Fourier Transform

« Essentially, we are figuring out how to build the
image out of these sinusoids of different
frequency

« Each pixel in the transformed image
corresponds to the amount of a sinusoid of a
particular sinusoid that is needed

High Frequencies

Low Frequencies




FFT magnitude spectrum of images

* notice a bright band going to high
frequencies perpendicular to the
strong edges in the image

* Anytime an image has a strong-
contrast, sharp edge the gray
values must change very rapidly. It
takes lots of high frequency power
to follow such an edge so there is
usually such a line in its
magnitude spectrum.




Application: Texture Analysis

Linen Texture Log Magnitude Spectrum




IS

Texture analysi

Application

Log Magnitude Spectrum

Jean Texture




What are the high frequencies?

What if we remove the high frequencies?

Old SpectrL'Jm N(?w Spectrum
How will the new image look?



What are the high frequencies?

Removing the high frequencies makes the image
look blurry

Old Spectrum New Spectrum

Try building a sharp edge out of low-frequency
sinusoids



What are the low frequencies?

What if we remove the low frequencies?

Old Spectrum New Spectrum

How will the new image look?



What are the low frequencies?

What if we remove the low frequencies?

Old Spectrlljm Ne.w Spectrum
How will the new image look?



FFT in Python

FFT
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude spectrum = 30*np.log(np.abs(fshift))
phase = np.angle(fshift)
Inverse FFT
rows, cols = img.shape
crow, ccol = rows/2 , cols/2 # center of the image
fshift[crow-5:crow+5, ccol-5:ccol+5] =0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)



2D discrete Fourier transform

» The discrete FT for a discrete signal {(x) with
N values 1s given by:

1 .
F(U) _ f(x) e—l2Hux/N
N x=0..N-1

F(u).re= % f(x)cos(=2ITux/N)

1 .
F(u).im = N x=;_j1£(X) sin(=2I1ux/ N)



Working with DFT (Discrete Fourier
Transform)

Is the complex part bothering you yet?
Let’s look at a different representation

Every complex number can also be
represented as: Z = x+jy = rel®

r- magnitude (real number), r = abs(Z) or x*+y’
©-phase



Phase and Magnitude

Fourier transform of a

real function is

complex

— Difficult to plot,
visualize, instead we
can think of phase and

magnitude of the
transform

Phase is the phase of
the complex transform

Magnitude is the
magnitude of the
complex transform

* Curious fact
* All natural images have

about the same
magnitude transform
Demonstration

* Take two pictures,

swap the phase
transform, compute
the inverse, what does
the result look like?



Phase and Magnitude

Input Image  Log Magnitude Spectrum

Not much new
image, but



What happens if you reverse Fourier
without the phase?

Open an image
Compute magnitude and phase of the image
Reverse the ONLY magnitude back

Image histogram equalize the reversed FFT
Image

Display the image
What happens?




What happens if you reverse Fourier
without the phase?

Same frequency, abstract nonsense
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This is the




This is the







This is the magnitude transform of the zebra pic




This is the phase transform of the zebra pic
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Reconstruction with zebra phase, cheetah magnitude




Reconstruction with cheetah phase, zebra magnitude




The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg=h]=F[g]F|[A]

e Convolution in spatial domain is equivalent to
multiplication in frequency domain!

g*h=F"[F[g]F[A]]

This is extremely handy!



Back to averaging

Remember:

1/9 11/9 |1/9

1/9 11/9 |1/9
1/9 11/9 |1/9




Back to averaging




Filtering

* We pixel-wise multiply the DFT (Discrete

Fourier Transform) of the input image by the
DFT of the filter

* Frequencies where the magnitude of the
response of the filter are new zero (black in
the images) will be removed.



Take the log to rescale
brightness

Log Spectrum after 3x3
averaging

Unfiltered Spectrum

Log-Spectrum after 7x7
averaging



First, the filter

Magnitude of the DFT



After Filtering




Filtering in spatial dom




Filtering in frequency domai[l

FFT

intensity image log fit magnitude

FFT

Inverse FFT

Slide: Hoiem




Filtering with FFT in Python

img = plt.imread('cheetah.png')

# prepare an 1-D Gaussian convolution kernel

t = np.linspace(-10, 10, 30)

bump = np.exp(-0.1*t**2)

bump /= np.trapz(bump) # normalize the integral to 1
# make a 2-D kernel out of it

kernel = bumpl:,np.newaxis] * bump[np.newaxis,:]

# padded fourier transform, with the same shape as the image
kernel_ft = np.fft.fft2(kernel, s=simg.shape[:2], axes=(0, 1))

# convolve

img_ft = np.fft.fft2(img, axes=(0, 1))
img2_ft = kernel_ft[:,:,np.newaxis] * img_ft
img2 = np.fft.ifft2(img2_ft, axes=(0, 1)).real

# clip values to range

img2 = np.clip(img2, 0, 1)

# plot output
plt.imshow(img2)



intensity image

Gaussian

filter: gaussian

filtered image
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filter: gaussian

log fit magnitude of filtered image




intensity image
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log fit magnitude of image

Box Filter

filter: box

Figure 4
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Vocabulary

Low Pass Filter:

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9




Vocabulary

Band-pass Filter:




Vocabulary

High-pass Filter:




Exercise 1

Download the FFTAnalysis.py from

nlackboard.

Use the einstein.png

Right now the image removes low frequency

(center) of the images.

Can you modify t
removing the hig

ne code that you are
n frequency (low pass) the

image? You can o

o this either by directly

modifying the DFT or use a filter.



Exercise 2

Download the Cheetha and Zebra images

DFT both images in Fourier domain and compute magnitude and
phase. | have already did this in the helper code
PhaseandMagnitude.py

You can compute phase and magnitude as this:
magnitude_zebra = 30*np.log(np.abs(fshift))
phase_zebra = np.angle(fshift)

Reconstruct the image with Cheetha phase and Zebra magnitude
and vice versa. You have to do this yourself!



ing

imple Image DE nosi

S

Exercise 3
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Application: Simple Image DE nosing

Examine the provided image moonlanding.png, which is
heavily contaminated with periodic noise. In this
exercise, we aim to clean up the noise using the Fast
Fourier Transform.

* 1.load in the image using plt.imread() or scipy.misc()

e 2.Use the 2DFFT in numpy.fft and plot the spectrum of
the image.

e 3. The spectrum consists f high and low frequency
components. The noise is contained in the high
frequency part of the spectrum, so set some of those
components to zero.

* 4. Apply the inverse FT to see the resulting image



Python demo: FFT of gratings

We want to create gratings in Python

Create two sine gratings that has different
special frequency and orientation

Compute FFT of the gratings
Sum them up.



