CSC589 Introduction to Computer
Vision
Lecture 8

Applications of Fourier Transform,
Sampling

Bei Xiao

Last Lecture

* Fourier transform and frequency domain
— Fourier transformation in 1d signal
— Fourier transform of images

— Fourier transform in Python

 Reminder: Read your text book 3.4.
Homework 2 is out and will be Due on
Thursday, Feb 19t" (extended). Start early!

Today’s lecture

Review of Fourier Transform

~iltering in Frequency domain

Pyvthon exercises Here is a useful tutorial on fft
with numpy:

http://docs.opencv.org/trunk/doc/

py tutorials/py imgproc/py transforms/
py fourier transform/

py fourier transform.html

Next Lecture: Guest Lecture

* Dr. Katerina Fragkiadaki:

* “Video Segmentation and Multi-object
tracking in the Era of Deep Learning!”

* She will also give a talk on video
understanding at 4-5pm on Thursday.

MATLAB or Python

We can choose again for the main tool for the rest of the
course.

Python appear to be difficult, have a sharper learning
curve, butitis a general purpose language.

MATLAB has much more tutorials online (especially for
image processing) and easier user interface. However, you
have to pay $100 for a student’ license or access through
university’s VPN with limited license.

You can try it out and run some demo codes (| will upload)
and we can vote again. | posted a survey on blackboard.

For now, we continue with demos in Python.
Homework 2 can be done either with Python or MATLAB.

Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Fourier Transform

« Essentially, we are figuring out how to build the
image out of these sinusoids of different
frequency

« Each pixel in the transformed image
corresponds to the amount of a sinusoid of a
particular sinusoid that is needed

High Frequencies

Low Frequencies

FFT magnitude spectrum of images

* notice a bright band going to high
frequencies perpendicular to the
strong edges in the image

* Anytime an image has a strong-
contrast, sharp edge the gray
values must change very rapidly. It
takes lots of high frequency power
to follow such an edge so there is
usually such a line in its
magnitude spectrum.

Application: Texture Analysis

Linen Texture Log Magnitude Spectrum

IS

Texture analysi

Application

Log Magnitude Spectrum

Jean Texture

What are the high frequencies?

What if we remove the high frequencies?

Old SpectrL'Jm N(?w Spectrum
How will the new image look?

What are the high frequencies?

Removing the high frequencies makes the image
look blurry

Old Spectrum New Spectrum

Try building a sharp edge out of low-frequency
sinusoids

What are the low frequencies?

What if we remove the low frequencies?

Old Spectrum New Spectrum

How will the new image look?

What are the low frequencies?

What if we remove the low frequencies?

Old Spectrlljm Ne.w Spectrum
How will the new image look?

FFT in Python

FFT
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude spectrum = 30*np.log(np.abs(fshift))
phase = np.angle(fshift)
Inverse FFT
rows, cols = img.shape
crow, ccol = rows/2 , cols/2 # center of the image
fshift[crow-5:crow+5, ccol-5:ccol+5] =0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)

2D discrete Fourier transform

» The discrete FT for a discrete signal {(x) with
N values 1s given by:

1 .
F(U) _ f(x) e—l2Hux/N
N x=0..N-1

F(u).re= % f(x)cos(=2ITux/N)

1 .
F(u).im = N x=;_j1£(X) sin(=2I1ux/ N)

Working with DFT (Discrete Fourier
Transform)

Is the complex part bothering you yet?
Let’s look at a different representation

Every complex number can also be
represented as: Z = x+jy = rel®

r- magnitude (real number), r = abs(Z) or x*+y’
©-phase

Phase and Magnitude

Fourier transform of a

real function is

complex

— Difficult to plot,
visualize, instead we
can think of phase and

magnitude of the
transform

Phase is the phase of
the complex transform

Magnitude is the
magnitude of the
complex transform

* Curious fact
* All natural images have

about the same
magnitude transform
Demonstration

* Take two pictures,

swap the phase
transform, compute
the inverse, what does
the result look like?

Phase and Magnitude

Input Image Log Magnitude Spectrum

Not much new
image, but

What happens if you reverse Fourier
without the phase?

Open an image
Compute magnitude and phase of the image
Reverse the ONLY magnitude back

Image histogram equalize the reversed FFT
Image

Display the image
What happens?

What happens if you reverse Fourier
without the phase?

Same frequency, abstract nonsense

' =y ?\%' aa

> '

This is the

This is the

This is the magnitude transform of the zebra pic

This is the phase transform of the zebra pic

RSt

.".
% ‘»@) x
A i
Vg A
A.)"

Reconstruction with zebra phase, cheetah magnitude

Reconstruction with cheetah phase, zebra magnitude

The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg=h]=F[g]F|[A]

e Convolution in spatial domain is equivalent to
multiplication in frequency domain!

g*h=F"[F[g]F[A]]

This is extremely handy!

Back to averaging

Remember:

1/9 11/9 |1/9

1/9 11/9 |1/9
1/9 11/9 |1/9

Back to averaging

Filtering

* We pixel-wise multiply the DFT (Discrete

Fourier Transform) of the input image by the
DFT of the filter

* Frequencies where the magnitude of the
response of the filter are new zero (black in
the images) will be removed.

Take the log to rescale
brightness

Log Spectrum after 3x3
averaging

Unfiltered Spectrum

Log-Spectrum after 7x7
averaging

First, the filter

Magnitude of the DFT

After Filtering

Filtering in spatial dom

Filtering in frequency domai[l

FFT

intensity image log fit magnitude

FFT

Inverse FFT

Slide: Hoiem

Filtering with FFT in Python

img = plt.imread('cheetah.png')

prepare an 1-D Gaussian convolution kernel

t = np.linspace(-10, 10, 30)

bump = np.exp(-0.1*t**2)

bump /= np.trapz(bump) # normalize the integral to 1
make a 2-D kernel out of it

kernel = bumpl:,np.newaxis] * bump[np.newaxis,:]

padded fourier transform, with the same shape as the image
kernel_ft = np.fft.fft2(kernel, s=simg.shape[:2], axes=(0, 1))

convolve

img_ft = np.fft.fft2(img, axes=(0, 1))
img2_ft = kernel_ft[:,:,np.newaxis] * img_ft
img2 = np.fft.ifft2(img2_ft, axes=(0, 1)).real

clip values to range

img2 = np.clip(img2, 0, 1)

plot output
plt.imshow(img2)

intensity image

Gaussian

filter: gaussian

filtered image

i e

=S

Y_D‘V

filter: gaussian

log fit magnitude of filtered image

intensity image

jew Insert Tools Desktop Window Help
S R RAOVDELN-S|0E O
log fit magnitude of image

Box Filter

filter: box

Figure 4
File Edit View Insert Tools Desktop Window Help
DNEEL | M AVNODRAL- S |([DE =D

filter: box

=)

filtered image

=
Figure 6

File Edit View Insert Tools Desktop Window Help
']J‘d;‘a [% +\';T-Z'@%D{'@J@E = O

log fit magnitude of filtered image

Vocabulary

Low Pass Filter:

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

Vocabulary

Band-pass Filter:

Vocabulary

High-pass Filter:

Exercise 1

Download the FFTAnalysis.py from

nlackboard.

Use the einstein.png

Right now the image removes low frequency

(center) of the images.

Can you modify t
removing the hig

ne code that you are
n frequency (low pass) the

image? You can o

o this either by directly

modifying the DFT or use a filter.

Exercise 2

Download the Cheetha and Zebra images

DFT both images in Fourier domain and compute magnitude and
phase. | have already did this in the helper code
PhaseandMagnitude.py

You can compute phase and magnitude as this:
magnitude_zebra = 30*np.log(np.abs(fshift))
phase_zebra = np.angle(fshift)

Reconstruct the image with Cheetha phase and Zebra magnitude
and vice versa. You have to do this yourself!

ing

imple Image DE nosi

S

Exercise 3

Py o ld ol e
0 OO d
342X 4 X
0 0. 0000 0 » |
*- .m.-m.“ . G20 i
NQeIeg Y0, 0
. . » .
v ey)
. A b, »uq 0”
PPN A V4
vl bid e o Q
N Yeoto 0
L0 80,00 ,
DRG0
. I-‘HIIH
>’ l- -I!
o bl by by e
GO0
Bl sl ot
OO0
W s len kv
s
0
P
X
0
o
4- » .nl Ili
S ML RIS S
0 P60 N U..cﬁnly-v.c 000
Y) - 4 .s-Ub
1 v
H
o
b}
*)
e
Y A
N 3
e 0 Q;
0 005 D
}) L
0 QR P
T e D0 0
X Y Y
v v Ady Sy WA A
3, L)
8 0\ vy
I 4
' I Y
" 0 0
"o " W
Y o e
0y » hon b
O Maplds
X Chr 4 4
SO0 OO
0 . OO
Ol Afyidy! " WMoyl O
bt X ') X i 4 152
Q05! W00 q 000 o0
nerey 0y 015 3 G 0850 jork
Y J, J. \/ A i- I‘-‘l ‘I‘ \J L)
W O ') Lo adio. el e
Q04 e b 0 30000 00 0
o gyid Oetive . AdyMy by iy v Meyldy Dhes
A) so My X X 1 e s o)
» 0:05: N b &34 i el 4 w0 b4
BG40 LS O O OB OO 0
. ') J ') ') ' ') B J
- e 0 14 ' NAPHIRA P M A e b o |
D 0 005 O O 0O b 1o MO
) 1 y ' 4 2L 1 1 ! ld I 8 ~‘- -luusdli
O Sahatadharin /) Qi T b SR
0.0 00503 e I OGI00 le DG,
Ay 1L 0 3 Ol AWV ALY OOy
X . X ‘. ol X X ole i N e
0 " 0 YOO8 OO DL O Cres
e PAE ™ I O e 2 D O DK
Y . D G e B R R O G D Q)
: ol o ide o U W00 W VL UL DL U0, W
Y ' R I e O O DL OO X
Y D Y AN ') X OO ')
elhes v v . ol i Al pri gy N ity O
') X ' ‘W I DV oo '
L 3007, 0.0 e 130,000, 00000050 - 0.0 0
" RS ORI O G0N Oy OO GO 0in 0 0n
w000, QO 0L 00 00 O 0L 0L O 0L 00y 0, 0D GO O i 0504
0030 DO D O U O B O P DO O D O D U D D S O P D0 0 Dy
0 Q0L T O G0 T4 @ D000 H0,0 DG
Y R A O O e D O L O B IR QL D e)
D00 G 0,050, 0009 D600 04025 0 0240, 0 810,00 DeiGe 0L 0 0. 0340, 00070 D0y
X ') X X X Y X L X Y 'y 3l I X
090 000 O 0%, ’ie O 00805 0:03:0:0 O
' b | |) ! 4 . e | |) ' 4 ' b | bt) | A 4 4)
volhln . OO Halhia e oSt bbalnlainls . Chdhetd

Application: Simple Image DE nosing

Examine the provided image moonlanding.png, which is
heavily contaminated with periodic noise. In this
exercise, we aim to clean up the noise using the Fast
Fourier Transform.

* 1.load in the image using plt.imread() or scipy.misc()

e 2.Use the 2DFFT in numpy.fft and plot the spectrum of
the image.

e 3. The spectrum consists f high and low frequency
components. The noise is contained in the high
frequency part of the spectrum, so set some of those
components to zero.

* 4. Apply the inverse FT to see the resulting image

Python demo: FFT of gratings

We want to create gratings in Python

Create two sine gratings that has different
special frequency and orientation

Compute FFT of the gratings
Sum them up.

