CSC589 Introduction to Computer
Vision
Lecture 6
Image Derivative, Image-Denoising
Bei Xiao

Last lecture

* Linear Algebra
* Matrix computation in Python

Today’s lecture

More on Image derivatives

Quiz

Image De-noising

Median Filter

Introduction to Frequency analysis

Homework is due today! Please follow hand-in
instructions. Be sure to include your write-up
document!!

Compute Image Gradient

Example:
Is = imcrop(1g);
Imagesc(Is);colormap(gray)

Compute gradient: first order
derivatives

I

- l IG+1,j) | I(I+L,j+1)
I

Compute gradient in the X-direction:

1) Take the image intensity difference in the X-direction
2) Average the difference in the Y-direction(smoothing)

((I(Laj + 1) o I(Za])]

+U(e+1,54+1)—1I(i+1,9))

Slide source: Jianbo Shi

Compute gradient: first order

derivatives

5_1(2-’]-) = %((l(i,j +1) = I(i,j))+ (I(i+1,j+1) - I(i+1,7)))

0x
|
. l 1(i+1,j) II(I+1,j+1)‘
|

[nr,nc] = size(Is);
Ix = zeros(nr,nc); % generate a empty matrix of size nr by nc
for 1=1:nr-1,
for j=1:nc-1,
Ix(1,)) = 0.5*%((Is(i,j+1) - Is(1,5)) + (Is(i+1j+1) - Is(i+1,))));
end

Slide source: Jianbo Shi

Compute gradient as convolution
operation!

I(x)= 1|2(5[5]10

(x)=

3(X)= 1|3

Compute gradient as convolution
operation!

I(x)= 1|2(5(5]10

f(x)=

g(x)= 13 |0

Compute gradient: first order
derivatives

IGj) | IGisj+1)

(+1) [I+Lj+1
|

ol

- (1:0) = (I(i,5+ 1) = 1(i. j));

=1®(5-)

Compute gradient: first order
derivatives

0
|

A - = 1 -1
I(i,)) I(i,j+1) AT - -

I(i+1,j) II(I+1,j+1)‘ S =
I

Example

! .

.
N

Usage in Python

X gradient

s1 = np.array([1,1]) 0,
dx = np.array([1,-1]) 100

dy = np.array([1,-1])
X = ndimage.convolveld(l,dx,axis= 0) 250 H——

gx_| = ndimage.convolve(x,s)

)
I — E—
z (I@M)@S

Usage in Python

sl =np.array([1,1]) o y gradient
dx = np.array([1,-1]) 1;’2
dy = np.array([1,-1]) 150

y = ndimage.convolveld(l,dx,axis= 1) ..,

. 0 100 200 300 400 500
gy | = ndimage.convolve(y,s)

Or: gx_lLgy | =np.gradient(l)[:2]

0

I, = (I
=Ues

) ® S’

We can switch the order of smoothing
and gradient

v

RG X —
ox
Image = | Smoothing | =—— Gradient
? =
&) — .
S RG

Image - [Gradient = | Smoothing

We can simplify even more

Image

Image

Gradient

RG

Smoothing

Smoothed Derivative

Smoothed derivative filter

i@G_éG _ oG 2z

ox T ox Sr o2

Gx

Sobel Filter

* Product of averaging and gradient.

* An cross product of two 1 d filter, Gaussian
and gradient

-2 0 +2| =|2|[-1 0 +1]

Review Questions (please turn in your
answer)

1. Write down a 3x3 filter that returns a positive
value if the average value of the 4-adjacent
neighbors is less than the center and a negative
value otherwise. Hint: don’t forget the
normalization factor.

2. Write down a filter that will compute the
gradient in the x-direction

gradx(y,x) = im(y,x+1)-im(y,x) for each x,y

Review Questions (please turn in your

answer)

3. Fillinthe blanks: o) 7 _
c) F D

d) = D

.— Filtering Operator

X X X

wl

B

A s

Slide: Hoiem

Image Noise

* Types of noises in images

— Gaussian noise: Poor illumination, additive,
independent for each pixel

— Salt and Pepper: Dead pixels on LCD monitor
— Film grain, poison distribution.

Wl

Image Noise

Additive Gaussian noise

Salt and pepper noise

Image Noise

* Add Gaussian noise: Image + noise
* |n Python:
noisy = | + 0.4 * |.std() *np.random.random(l.shape)

e Salt and Pepper noise
 Randomly replace pixels with white and black values

* |In Python:
num_salt = np.ceil(0.05 * l.size * 0.5)
coords = [np.random.randint(0, i - 1, int(num_salt))
foriin l.shape]

Median Filter

X =1[2806 3]
The median filter has a window size 3

The median filtered out signal y will be:
Y[1] = Median [2 2 80] =2
Y[2] = Median [2806]=6
Y[3] = Median[806 3] =6
Y[3] =Median[633]=3

Notice the repeating of the first element

Selecting one pixel as a time; Not as efficient as Gaussian Filter

Median Filter

10]15]20 No new pixel values
23(90]27 introduced
| 3131130 l Sort .
Median value e Al « Removes Splkes: gOOd

10 15 20 23 |27|30 31 33 90 for impulse, salt &

epper noise
[0]15]20 I Replace pPepp
23127127 e Linear?
3313130

Comparison of the de-noisy results

Noisy Image Gaussian filter

)1

Box filter Median filter

A A 4

Comparison of the de-noisy results

o Noisylmage Gaussian filter

Medlan filter

Median Filter

‘“

7z Median
filtered

Salt and | 4§ (
pepper
noise '

= | | f

o R

: ' M ’ | i) J “wwﬁ
wretfly §ooEett Y

Plot of a row of the image

Median Filter

* Median filter is edge preserving
coss sos | INPUT
MEDIAN
‘ - MEAN

K. Grauman

Pros and Cons of median filter

* Pros:

— The median is a more robust average than the mean
and a single very unrepresentative pixel in a
neighborhood will not affect the median value
significantly.

— The median value must actually be from the image
pixels, so the median filter does not create new
unrealistic pixel values when the filter straddles an
edge.

e Cons:

— selecting one pixel one time, not as efficient as
Gaussian

Median Filter in Pyton

* med_denoised = ndimage.median_filter(noisy,
windowsize)

Exercise

* Use the following image (uploaded in
blackboard) and explore the effect of median
filtering with different neighborhood size

Exercise

Unlike Gaussian filter, median filter is nonlinear.
Median [A(x) + B(x)] = median[A(x)] + median[B(x)]

lllustrate this to yourself by performing smoothing
and pixel addition (in the order above) to a set of

test images

7

Hybrid Image

.....

0
fre%gency (c/1)

* A.Oliva, A. Torralba, P.G. Schyns,
“Hvbrid Images.” SIGGRAPH 2006

Why do we get different, distance-dependent
interpretations of hybrid images?

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Gaussian Box filter

