#### CSC 589 Introduction to Computer Vision

#### Lecture 2 linear filtering





Salvador Dali "Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Instructor: Bei Xiao Thursday, January 15th

#### Take-home work (very important)

#### Reading

Read Szelisky: Chapter 3.1, 3.2. You can skip color if you want.

A tutorial on Image convolution: http://lodev.org/cgtutor/filtering.html

#### Software

Install Numpy, Scipy
The easiest thing to do is to install Spyder, which has Numpy Scipy
<a href="https://bitbucket.org/spyder-ide/spyderlib/downloads">https://bitbucket.org/spyder-ide/spyderlib/downloads</a>

But if you can figure out using command line + sublime text, it will be great because eventually we will do that.

We will use Scipy.ndimages http://docs.scipy.org/doc/scipy/reference/ndimage.html#scipy.ndimage

Scipy image tutorial: http://scipy-lectures.github.io/advanced/image\_processing/

#### Today's class

- What is an image?
- Point Process
- Neighborhood operation
- Convolution

#### Coding environment

#### MATLAB

- Pro: Well-established packages. Many tutorials and examples online. Great for numerical stuff.
- I have many years of experience with it.

#### • Cons:

- Expensive! Talk to me about getting access.
- Not a general programming language.

#### Coding environment

- Numerical Python
- Pro: All the capabilities of MATLAB
  - Free!
  - Real programming Language
  - Used for lots of stuff besides numerical programming
  - By using it, we are contributing to the community of Python users!

#### Cons:

- Needs set up (install packages, import Libraries)
- documentation is a bit sparse, lack of good tutorials

#### Choices of Python Image libraries

- Level 1 (basic): Numpy, treating image as matrix
- Level 2 (Scipy): an image I/O (scipy.misc.imread),
   scipy.ndimage package that has convolution, filters, etc.
- Level 3 (<u>sckit-image</u>): equivalent to MATLAB image processing toolbox, but better. Many built-in stuff, so not suitable for conceptual learning in the beginning.
- High-level (OpenCV): it is not suitable for teaching but suitable for development. Very different from actual Python. We might use it for some projects later in the course.
- Python Image Library (Pillow), kind of limited and not many people use it.

#### Choices of Python libraries

- Level 1 (basic): Numpy, treating image as matrix
- Level 2 (Scipy): an image I/O (scipy.misc.imread), scipy.ndimage package
- Level 3 (<u>sckit-image</u>): equivalent to MATLAB image processing toolbox, but better. We will use it when we need to.
- High-level (OpenCV): it is not suitable for teaching but suitable for development. We might use it for some projects later in the course.

The higher level library you use, the less control you have!

# To start, we will use the basic level libraries!

- Level 1 (basic): Numpy, basic numerical Python, treating image as matrix
- Level 2 (Scipy): an image I/O (scipy.misc.imread), scipy.ndimage package

We will write our own functions!



#### A useful tutorial

Computer vision for dummies



Source: A. Efros

A grid (matrix) of intensity values



| 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 255 | 20  | 0   | 255 | 255 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 255 | 75  | 75  | 75  | 255 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 75  | 95  | 95  | 75  | 255 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 96  | 127 | 145 | 175 | 255 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 127 | 145 | 175 | 175 | 175 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 127 | 145 | 200 | 200 | 175 | 175 | 95  | 255 | 255 | 255 |
| 255 | 255 | 127 | 145 | 200 | 200 | 175 | 175 | 95  | 47  | 255 | 255 |
| 255 | 255 | 127 | 145 | 145 | 175 | 127 | 127 | 95  | 47  | 255 | 255 |
| 255 | 255 | 74  | 127 | 127 | 127 | 95  | 95  | 95  | 47  | 255 | 255 |
| 255 | 255 | 255 | 74  | 74  | 74  | 74  | 74  | 74  | 255 | 255 | 255 |
| 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 |
| 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 |

(common to use one byte per value: 0 = black, 255 = white)

- We can think of a (grayscale) image as a function, f, from R<sup>2</sup> to R:
  - -f(x,y) gives the **intensity** at position (x,y)





A digital image is a discrete (sampled, quantized)
 version of this function

#### Image Processing

- Define a new image g in terms of an existing image f
  - We can transform either the domain or the range of f
- Range transformation:

$$g(x,y) = t(f(x,y))$$

What kinds of operations can this perform?

#### **Point Operations**



#### **Point Processing**

Original



Darken



**Lower Contrast** 



Nonlinear Lower Contrast



Invert



Lighten



**Raise Contrast** 



Nonlinear Raise Contrast



### **Point Processing**



# **Neighborhood Operations**



# Neighborhood operations







Image

Edge detection

Blur

# Neighborhood operations







Image

Edge detection

Blur

# 3×3 Neighborhood





# 5×5 Neighborhood





# 7×7 Neighborhood









| 0 | 3 | 0 | 0  |
|---|---|---|----|
| 0 | 6 | 1 | 16 |
| 0 | 0 | 2 | 46 |
| 0 | 0 | 2 | 43 |

Normalized box filter (3×3)

| 0 | 3 | 0 | 0  |
|---|---|---|----|
| 0 | 6 | 1 | 16 |
| 0 | 0 | 2 | 46 |
| 0 | 0 | 2 | 43 |

| 1/9 | 1/9 | 1/9 |
|-----|-----|-----|
| 1/9 | 1/9 | 1/9 |
| 1/9 | 1/9 | 1/9 |



Multiply corresponding numbers and add



- Multiply corresponding numbers and add
- Template moves across the image
- Think of it as a sliding window

#### This is called convolution

Mathematically expressed as



#### Notation

- Also denoted as
- $\bullet R = I * K$
- We "convolve" I with K
  - -Not convolute!



#### Filtering vs. Convolution

2d filtering

-h=filter2(g,f); or h=imfilter(f,g); 
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

- 2d convolution
  - -h=conv2(g,f);

$$h[m,n] = \sum_{k,l} g[k,l] f[m-k,n-l]$$

We use Filter and Convolution interchangeable when the image is SYMMETRIC

# Sliding Template View

• Take the template K

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

• Flip it

| 9 | 8 | 7 |
|---|---|---|
| 6 | 5 | 4 |
| 3 | 2 | 1 |

Slide across image

#### Let's take out paper and pen

• What is the result of the following convolution?

|       |   |   | m  |    | _    |     |
|-------|---|---|----|----|------|-----|
|       |   |   | n  | -1 | 0    | _1_ |
| 1     | 2 | 3 | -1 | -1 | -2   | -1  |
| 4     | 5 | 6 | 0  | 0  | 0    | 0   |
| 7     | 8 | 9 | 1  | 1  | 2    | 1   |
| Input |   |   |    | Ke | rnel |     |

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

## Let's take out paper and pen

• What is the result of the following convolution?

| _ |   |       |   | m  | -1 | 0    | 1  |
|---|---|-------|---|----|----|------|----|
|   | 1 | 2     | 3 | -1 | -1 | -2   | -1 |
|   | 4 | 5     | 6 | 0  | 0  | 0    | 0  |
|   | 7 | 8     | 9 | 1  | 1  | 2    | 1  |
|   |   | Input |   |    | Ke | rnel |    |

#### Let's take out a paper and a pen

• What is the result of the following convolution?



$$1*0 + 2*0 + 1*0 + 0*0 + 1*0 + 2*0 + (-1)*0 + (-2)*4 + (-1)*5 = -13$$

# Let's take out a paper and a pen

• What is the result of the following convolution?

| 1       | 2       | 1       |
|---------|---------|---------|
| 0 1     | 0 2     | 0 3     |
| -1<br>4 | -2<br>5 | -1<br>6 |
| 7       | 8       | 9       |

#### Rules of a image filter

- It's size has to be uneven, so that it has a center, for example,  $3\times3$ ,  $5\times5$ ,  $7\times7$
- It doesn't have to, but the sum of all elements of the filter should be 1 if you want the result image to have the same brightness as the original
- If the sum of the element of is larger than 1, the result will be a brighter image, if it is smaller than 1, the resulting image will be darker.





| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |



| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |





| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |



| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |





| 0 | 1 | 0 |
|---|---|---|
| 1 | 2 | 1 |
| 0 | 1 | 0 |







Should be

#### Practice with linear filters







0

Filtered (no change)

# Linear filters: examples









Blur (with a mean filter)

#### Practice with linear filters



| 0 | 0 | 0 |
|---|---|---|
| 0 | 2 | 0 |
| 0 | 0 | 0 |





Original

#### **Sharpening filter**

- Accentuates differences with local average

# Sharpening





before after

#### Other filters



| 1 | 0 | -1 |
|---|---|----|
| 2 | 0 | -2 |
| 1 | 0 | -1 |

Sobel



Vertical Edge (absolute value)

#### Other filters



| 1  | 2  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -2 | -1 |

Sobel



Horizontal Edge (absolute value)

#### Next class (Next Thursday)

- Tutorial on image processing with Python (Numpy, Scipy, Matplotlib)
- More on image processing, contrast enhancement, image histograms, Gaussian Filter