CSC 589 Introduction to Computer Vision

Lecture 14 Boundary Detection

Prof. Bei Xiao

Spring, 2014

American University

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Canny Edge Operator

- 1. **Noise reduction:** Filter image with x, y derivatives of Gaussian
- Intensity gradients: Find magnitude and orientation of gradient

3. Non-maximum suppression:

Thin multi-pixel wide "ridges" down to single pixel width

4. Thresholding and linking (hysteresis):

- Define two thresholds: low and high
- Use the high threshold to start edge curves and the low threshold to continue them
- Python: cv2.Canny(img, lo, hi),
- skimage.filter.canny
- canny(img, sigma)

Original image

Gradient magnitude

(a) Smoothed

(b) Gradient magnitudes

Gradient magnitude

Sobel Filter on x and y directions

$$K_{
m GX} = \left[egin{array}{cccc} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{array}
ight]$$
 $K_{
m GY} = \left[egin{array}{cccc} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{array}
ight]$

$$|G| = \sqrt{G_{
m x}^2 + G_{
m y}^2}$$

 $|G| = |G_{
m x}| + |G_{
m y}|$

Non-maximum suppression

(a) Gradient values

(b) Edges after non-maximum suppression

http://www.cse.iitd.ernet.in/~pkalra/csl783/canny.pdf

Non-maximum suppression

Hysteresis

http://www.cse.iitd.ernet.in/~pkalra/csl783/canny.pdf

Canny Edge Detector

Effect of σ (Gaussian kernel spread/size)

original

Canny with $\sigma = 1$

Canny with $\sigma = 2$

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

11

Source: S. Seitz

Quiz: which image (b), (c), and (d) is the result of applying canny edge detector? Explain your answer.

What is difference between Boundary and edges?

Boundary: High-level object information. Whether a pixel belongs to an object or not.

Edges: Low-level information, sudden change in intensity values.

Input Image

Crispy Boundary

Canny

Where do humans see boundaries?

Berkeley segmentation database:
 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Look for changes in texture, color, brightness

pB boundary detector

Edge detection vs. boundary detection

- 1. Classical methods use local derivative filters with fixed scales and only a few orientations. Tend to emphasize small and unimportant edges.
- Contemporary methods uses multiple scales, multiple feature from image patches (color, textures, intensity). Using statistical methods (give each pixel a probability of being a boundary) to learn boundaries.
- 3. Isola et al. (2014) uses mutual information between pixels to detect boundary.

Key observation: Pixels belonging to the same object have higher statistical association than pixels belonging to different objects.

Slide courtesy from Philip Isola

.

Point-wise mutual information reveals object structure

Above, black-next-to-white occurs over and over again. This pattern shows up in the image's statistics as a *suspicious coincidence* — these colors must be part of the same object! How do we distinguish the red and the green patches?

Object Boundary

P(A,B)= how often each color A occurs next to each color B within this image.

B: Black pixel

http://en.wikipedia.org/wiki/Mutual information

Pointwise mutual information (PMI)

$$PMI_{\rho}(A, B) = \log \frac{P(A, B)^{\rho}}{P(A)P(B)}$$

Use PMI as affinity measure for affinity-based pixel grouping.

How much more likely is observing A given that we saw B in the same local region, compared to the base rate of observing A in the image.

Joint distribution of two pixels

Above, black-next-to-white occurs over and over again. This pattern shows up in the image's statistics as a *suspicious* coincidence — these colors must be part of the same object!

$$P(A,B) = \frac{1}{Z} \sum_{d=d_0}^{\infty} w(d)p(A,B;d),$$

We measure how often each color A occurs next to each color B within the image.

Is PMI informative about object boundaries?

Is PMI informative about object boundaries?

Step 1: Estimate feature co-occurrence distribution P(A, B)

Step 2: Derive PMI(A,B) from feature co-occurrence distribution

Step 3: Use PMI as affinity between each pair of nearby pixels

Step 4: Group pixels based on affinity (spectral clustering)

Works on diverse stimuli

Cellphone photo

Satellite imagery

Art

45 years of boundary detection

State of edge detection

- Local edge detection works well
 - But many false positives from illumination and texture edges
- Some methods to take into account longer contours, but could probably do better
- Few methods that actually "learn" from data.
 For example, Sketch Tokens, will do so.
- Poor use of object and high-level information

Questions

Take-home reading and demo code

- Szeliski Chapter 4.2 Edges
- Original PB paper:
- http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/ mfm-pami-boundary.pdf
- Crispy Boundary Paper and code:
- http://web.mit.edu/phillipi/pmi-boundaries/
- Edge detection with Skimage:
- http://scikit-image.org/docs/dev/user_guide/ tutorial_segmentation.html