The blue and green colors are actually the same



Read about it here:
http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/



CSC589 Introduction to Computer Vision
Lecture 12

Edges and Boundary Detection



Previous Lectures

 We’'ve now touched on the first two chapters
of Szeliski, roughly.
— 1. Introduction

— 3. Image Processing

* Now we’re moving on to
— 4, Feature Detection and Matching
— Camera and Image formation Chapter 2

— Multiple views and motion (7, 8, 11)



Project 3 and mid-term exam

Implement Pyramid image blending
Will be out on Friday, due in a week.
Mid-term exam is on Monday, March 17th,
Time to review what we have learned so far.



Edge detection

e Goal: Identify sudden
changes (discontinuities) in

an image r N\
— Intuitively, most semantic and ( | )
shape information from the j

image can be encoded in the
edges
— More compact than pixels

e |deal: artist’ s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe



Why do we care about edges?

e Extract information,
recognize objects
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Origin of Edges

surface normal discontinuity

depth discontinuity

-—
AO ../_—(\.\ surface color discontinuity
™ Z

illumination discontinuity

* Edges are caused by a variety of factors

Source: Steve Seitz



Closeup of edges
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Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Edge is Where Change Occurs

* Change is measured by derivative in 1D

* Biggest change, derivative has maximum
magnitude

e Or 2"d derivative is zero.




Edge is Where Change Occurs
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Characterizing edges

e An edge is a place of rapid change in the
image intensity function

image

intensity function
(along horizontal scanline)

first derivative

\ |

edges correspond to
extrema of derivative




Image gradient

* The gradient of animage: V [ = [gi’gg]

The gradient points in the direction of most rapid increase in intensity

V=[5 0]

vf—[ %

The edge strength is given by the gradient magnitude:

1Vl = /D + (G

The gradient direction is given by:
= -1 (0f ,9f )

e how does this relate to the direction of the edge?

Source: Steve Seitz



Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(@)
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Where is the edge?

Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: D. Forsyth



Solution: smooth first

Sigma = 50

................................................................................................
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To find edges, look for peaks in —(f*g)

Source: S. Seitz



Derivative theorem of convolution

e Differentiation is coc?volution, ancillconvolution is
associative: —(fxg)=fx—g
dx dx

e This saves us one operation:

Sigma = 50
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Image with Edge Edge Location

Derivatives detect Smoothed derivative removes
edge and noise noise, but blurs edge

Image + Noise



2D edge detection filters
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Derivative of Gaussian filter

2 2 P

x-direction y-direction




The Sobel operator

« Common approximation of derivative of Gaussian
— A mask (not a convolution kernel)

10| 1 1[2] 1
1 1

sl2]0]2 glo]o]o
10| 1

S Sy

e The standard defn. of the Sobel operator omits the 1/8 term
— doesn’t make a difference for edge detection
— the 1/8 term is needed to get the right gradient magnitude



What kind of filters are those?

Sobel filter:
(1 0 +1] 1 —2 —1]
G,=|-2 0 +2|xA and G, = 0 0 0
_—1 0 +1~ _+1 +2 +1_
Magnitude:

G=4/G.2+G,’

Direction:

© = atan2(G,, G,)

* A



Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

FIGURE 5.3: The scale (i.e., o) of the Gaussian used in a derivative of Gaussian filter has
significant effects on the results. The three images show estimates of the derivative in the
x direction of an image of the head of a zebra obtained using a derivative of Gaussian
filter with o one pixel, three pixels, and seven pixels (left to right). Note how images at
a finer scale show some hair, the animal’s whiskers disappear at a medium scale, and the
fine stripes at the top of the muzzle disappear at the coarser scale.

Source: D. Forsyth




o= 1 pixel o= 2 pixel

Original

FIGURE 5.4: The gradient magnitude can be estimated by smoothing an image and then
differentiating it. This is equivalent to convolving with the derivative of a smoothing
kernel. The extent of the smoothing affects the gradient magnitude; in this figure, we
show the gradient magnitude for the figure of a zebra at different scales. At the center,
gradient magnitude estimated using the derivatives of a Gaussian with o = 1 pixel; and on
the right, gradient magnitude estimated using the derivatives of a Gaussian with o = 2
pixel. Notice that large values of the gradient magnitude form thick trails.

Source: D. Forsyth



Implementation issues

e The gradient magnitude is large along a thick
“trail” or “ridge,” so how do we identify the
actual edge points?

e How do we link the edge points to form curves?

Source: D. Forsyth



Designing an edge detector

e Criteria for a good edge detector:

— Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

— Good localization

* the edges detected must be as close as possible to
the true edges

e the detector must return one point only for each
true edge point
* Cues of edge detection

— Differences in color, intensity, or texture across the
boundary

— Continuity and closure
— High-level knowledge

Source: L. Fei-Fei



Canny edge detector

e This is probably the most widely used edge
detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of

the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei



Canny edge detector

e Minimizes the probability of multiply
detecting an edge

e Minimizes the probability of failing to
detect an edge

e Minimizes the distance of the reported
edge to the true edge.

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei



Note about Matlab’s Canny detector

* Small errors in implementation
— Gaussian function not properly normalized

— First filters with a Gaussian, then a difference of
Gaussian (equivalent to filtering with a larger
Gaussian and taking difference)



Example

original image (Lena)



Derivative of Gaussian filter

2 jAz

x-direction y-direction




Compute Gradients (DoG)

Gradient Magnitude



The Canny edge detector

e original image (Lena)



The Canny edge detector

norm of the gradient



The Canny edge detector

thresholding



The Canny edge detector

thinning
(non-maximum suppression)



Get Orientation at Each Pixel

e Threshold at minimum level

* @Get orientation

theta = atan2(gy, gx)




Non-maximum suppression for each

orientation
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Source: D. Forsyth

At g, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.




Non-maximum suppression

* m(x,y) is the local peak

* Canny calls local peak detection non-
maximum suppression

m(z,y) > m(z + dx,y + dy),

m(a:, y) > m(a: o &an _ 5y)

M(x,y) is a local peak whenever it is greater than the
values in the gradient direction and the opposite of the
gradient direction.



Non-maximum suppression

e Thin the broad ridges in M[1,j] into ridges that are only one
pixel wide

* Find local maxima in M[1,j] by suppressing all values along
the line of the Gradient that are not peak values of the ridge

o 0 0 0 1 1 1 (33
30 01 2 1 (3 1
0 0 2 1 2 1~1 0
false 0o 1 ® 2 11 0 ©
edges 0 @ 2 1 0 0 1 2
2 ® 2 0 0 1 0 1 gaps
2 ® 2 0 1 0 2 1



Non-maximum suppression

» Reduce angle of Gradient 6[1,j] to one of the 4 sectors
* Check the 3x3 region of each M|1,]]

 If the value at the center 1s not greater than the 2
values along the gradient, then M|1,]] 1s set to 0

90

180




Non-maximum suppression

—  Jlocal
maxima

°°°°°° removed

_____ depends
on condition




Non-maximum suppression
3
0
0
0

false edges

oSO O O O O O

0

* The suppressed magnitude image will contain many
false edges caused by noise or fine texture



Before Non-max Suppression




After non-max suppression




Edge linking

@
Gradient

Source: D. Forsyth

Assume the marked point is
an edge point. Then we
construct the tangent to the
edge curve (which is normal
to the gradient at that point)
and use this to predict the
next points (here either r or s).




Sidebar: Bilinear Interpolation

flay)~{l-2 2 !f(l,O) f(l,l)” y ]
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http://en.wikipedia.org/wiki/Bilinear interpolation




Sidebar: Interpolation options

* imx2 = imresize(im, 2, interpolation_type)

* ‘nearest’
— Copy value from nearest known
— Very fast but creates blocky edges

e ‘bilinear’
— Weighted average from four nearest known
pixels

— Fast and reasonable results

e ‘bicubic’ (default)
— Non-linear smoothing over larger area (4x4)

— Slower, visually appealing, may create
negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation




Before Non-max Suppression




After non-max suppression




Double thresholding

* The remaining pixels are then categorized into
strong, weak and non-edges.

* Above a high threshold, mark as strong.
 Between high and lo, mark as weak.

* Below lo threshold, mark as non-edges



Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels



Hysteresis thresholding

* Check that maximum value of gradient
value is sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz



Final Canny Edges




Canny Edge Operator

B Smooth image / with 2D Gaussian: G/

B Find local edge normal directions for each pixel
V(G*T)
V(G 1)

n=

®  Compute edge magnitudes ‘V(G 1 )

B Find the location of the edges by finding zero-crossings along the edge
normal directions (non-maximum suppression)

82Q?*1)=O
on’

B Threshold edges in the image with hysteresis to eliminate spurious
responses

Read Canny’s original paper for further details




Effect of o (Gaussian kernel spread/size)

N
“ |r—"! \.\J__‘p/? '\:M NN
\I — \ -

original Canny with 0 = 1 Canny with 0 = 2

The choice of o depends on desired behavior

» large o detects large scale edges
« small o detects fine features

Source: S. Seitz



Take-home reading

e Szeliski Chapter 4.2 Edges

 Avery good introduction of Canny edge
detection:

 http://www.classes.cs.uchicago.edu/archive/
2005/fall/35040-1/edges.pdf

* Avyoutube video is also helpful:
 https://www.youtube.com/watch?v=-Z3kr26Eci4




Where do humans see boundaries?

image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/




Building Visual Dictionaries

1. Sample patches from
a database

— E.g., 128 dimensional
SIFT vectors

2. Cluster the patches

—  Cluster centers are
the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster




pB boundary detector

Texture Brightness

Martin, Fowlkes, Malik 2004: Learning to Detect
Natural Boundaries...
http://www.eecs.berkeley.edu/Research/Projects/
CS/vision/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes



pB Boundary Detector
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Figure from Fowlkes
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Results

Pb (0.88)




Results

Human (0.96)
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For more:

http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/bench/html/108082-




Global pB boundary detector

Extract Pb

-

—)

Gradient of
eigenvectors

Figure from Fowlkes



45 years of boundary detection
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State of edge detection

* Local edge detection works well

— But many false positives from illumination and
texture edges

* Some methods to take into account longer
contours, but could probably do better

 Few methods that actually “learn” from data.
Your project 5, Sketch Tokens, will do so.

* Poor use of object and high-level information



Artist D Artist B

Artist G

Style and abstraction in portrait sketching,
Berger et al. SIGGRAPH 2013

270s 90s 30s 15s

e Learn from artist’s strokes so that edges are
more likely in certain parts of the face.



Questions



