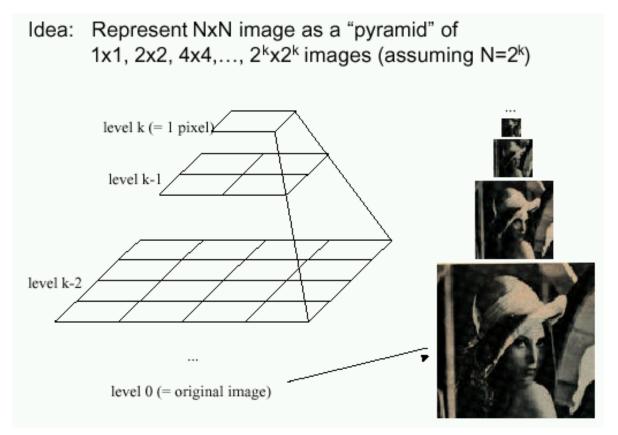
CSC589 Lecture 11

Pyramid Image Blending

Bei Xiao

Gaussian pyramids [Burt and Adelson, 1983]

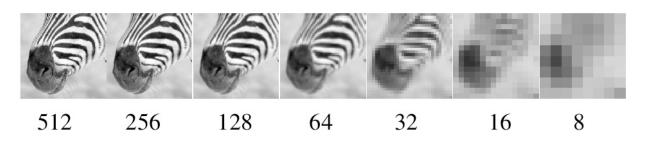


- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision

Source: S. Seitz

Gaussian pyramid



A bar in the big image is a hair on the zebera's nose; in smaller images, a stripe; in the smallest, the animal's nose.

Source: Forsyth

What are Pyramids good for?

Improve Search

- Search over translations
- Search over scale
 - Template matching
 - E.g. find face at different scales

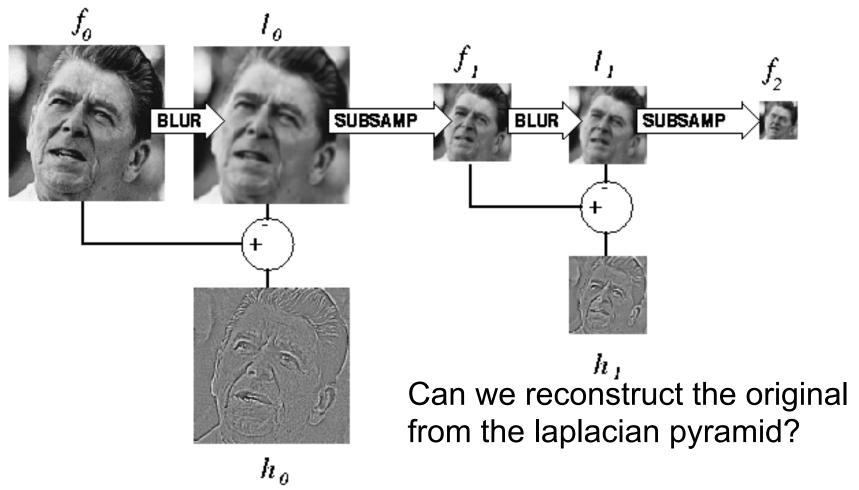
Precomputation

- Need to access image at different blur levels
- Useful for texture mapping at different resolutions (called mipmapping)

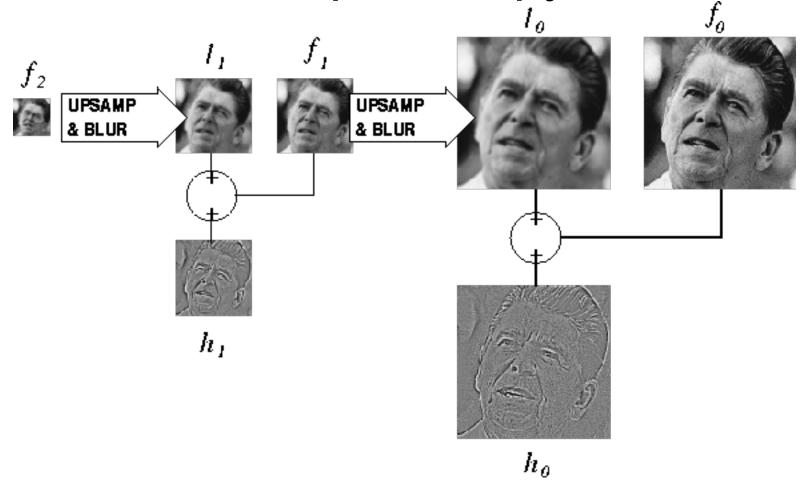
Image Processing

- Editing frequency bands separately
- E.g. image blending

Computing Gaussian/Laplacian Pyramid

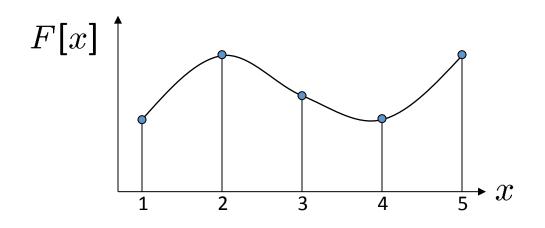


Can we reconstruct the original from the laplacian pyramid?



Upsampling

- This image is too small for this screen:
- How can we make it 10 times as big?
- Simplest approach:
 repeat each row
 and column 10 times
- ("Nearest neighbor interpolation")

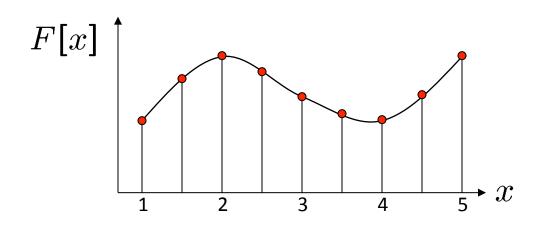


d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

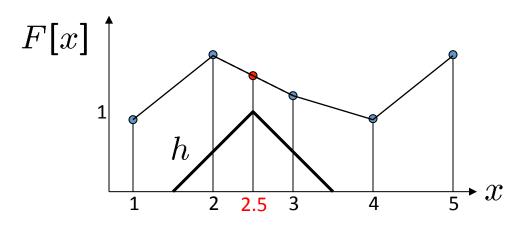


d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

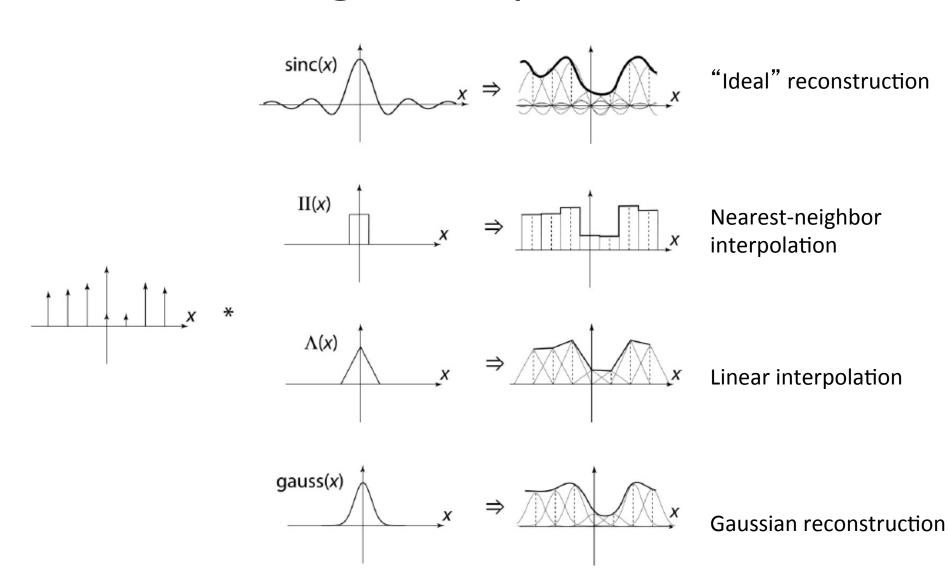
- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale



d = 1 in this example

- What if we don't know f?
 - Guess an approximation: $ilde{f}$
 - Can be done in a principled way: filtering
 - Convert F to a continuous function: $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise
 - Reconstruct by convolution with a reconstruction filter, h

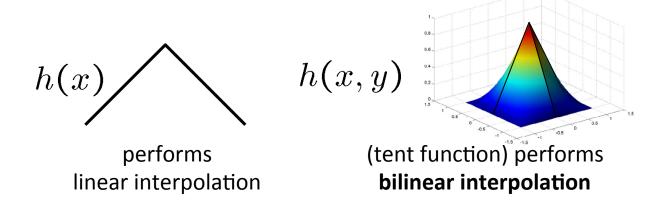
$$\tilde{f} = h * f_F$$



Source: B. Curless

Reconstruction filters

What does the 2D version of this hat function look like?

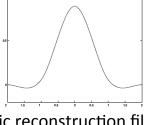


Often implemented without cross-correlation

• E.g., http://en.wikipedia.org/wiki/Bilinear interpolation

Better filters give better resampled images

Bicubic is common choice



$$r(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) & |x| < 1 \\ ((-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) & 1 \le |x| < 2 \\ 0 & otherwise \end{cases}$$

Cubic reconstruction filter

Original image: ី x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Image Composition

Image Composition

1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

2. Blend them into the composite (in the right order)

Composite by David Dewey

Image Composition

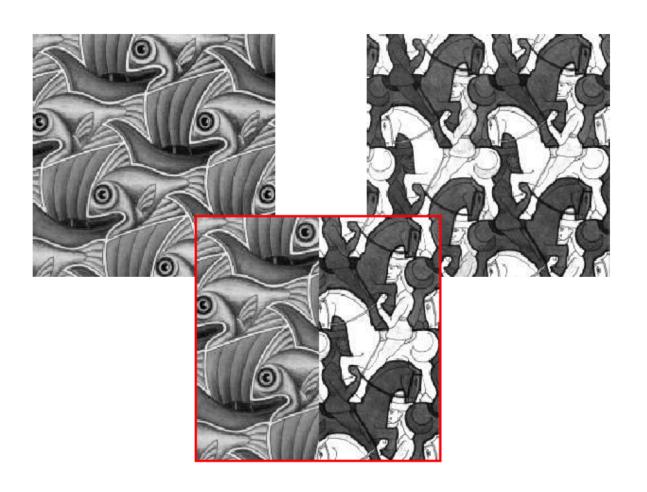
What can you do?

- 1. Copy and paste. Will generate artifacts at the border.
- 2. Feathering, using alpha channel and use a weighted sum over a window of two images (Feathering).
- 3. Combine the two images at different frequency bands (Pyramid Image Blending)

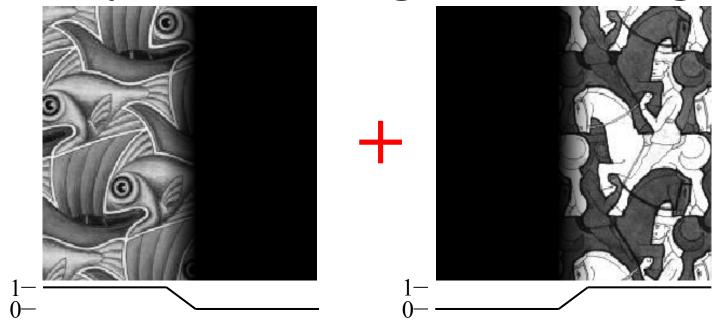
Alpha Channel

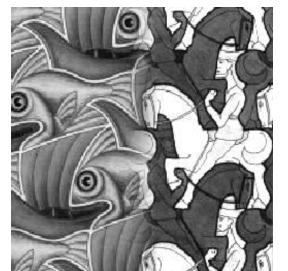
- Add one more channel:
- -Image (R,G,B, alpha)
- Encodes transparency (or pixel coverage)
- -Alpha = 1: Opaque object (complete coverage)
- -Alpha = 0: transparent object (no coverage)
- -0<Alpha < 1: semi-transparent (partial coverage)
- Example: alpha = 0.3
- Read in alpha channel in Python:
- alpha_img = cv2.imread(path, cv2.IMREAD_UNCHANGED)

Image Blending



Alpha Blending/Feathering

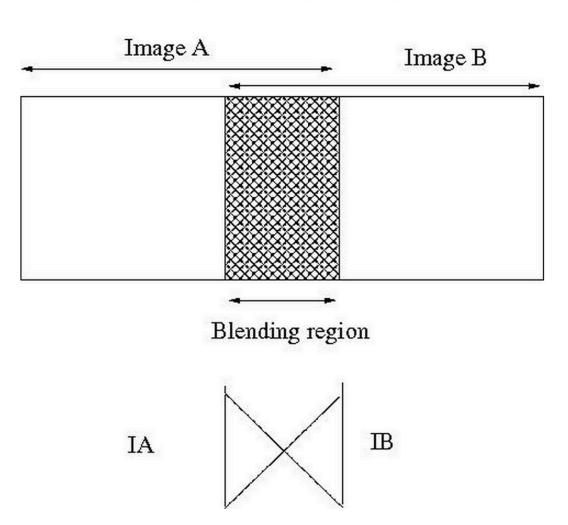




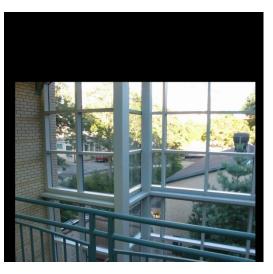
$$I_{blend} = \alpha I_{left} + (1-\alpha)I_{right}$$

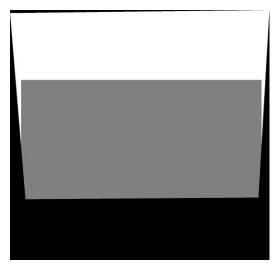
Alpha Blending/Feathering

PB(i,j) = (1-w)*PA(i,j) + w*PB(i,j)



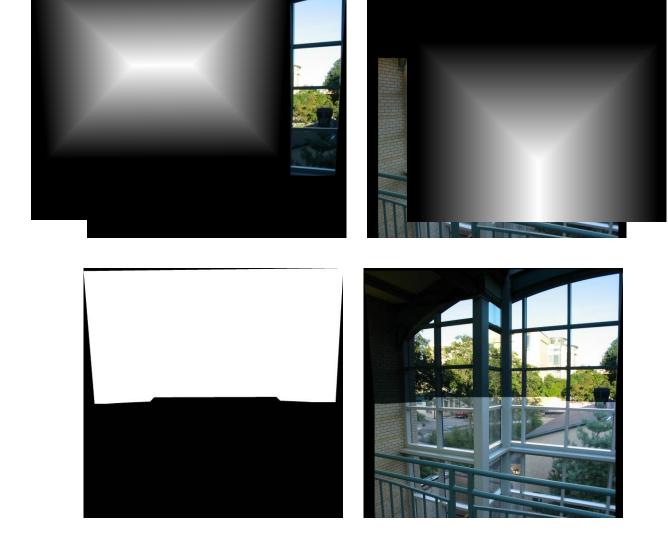
Setting alpha: simple averaging





Alpha = .5 in overlap region

Setting alpha: center seam

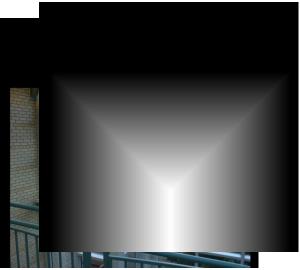


Compute
Distance
Transform
Between
binary
Images
using
bwdist

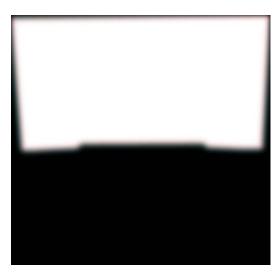
Alpha = logical(dtrans1>dtrans2)

Setting alpha: blurred seam



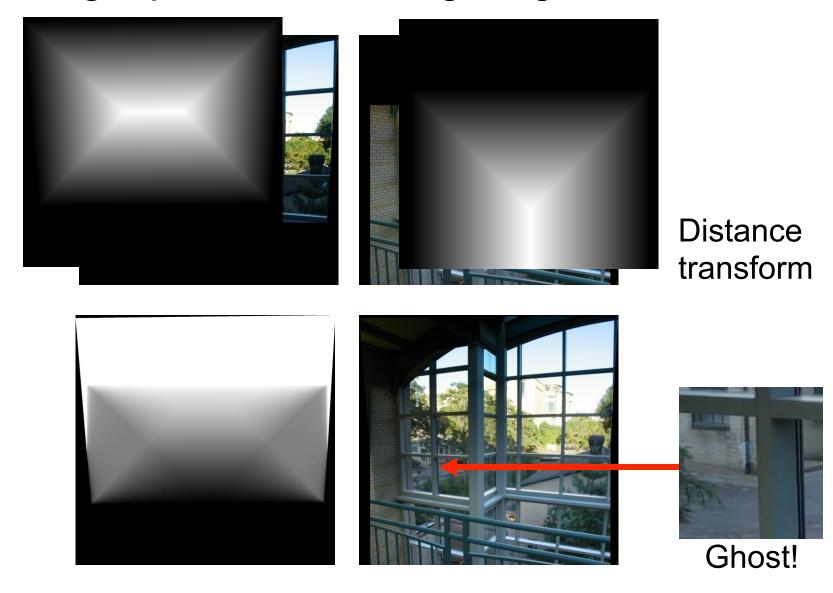


Distance transform



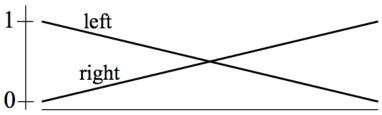
Alpha = blurred

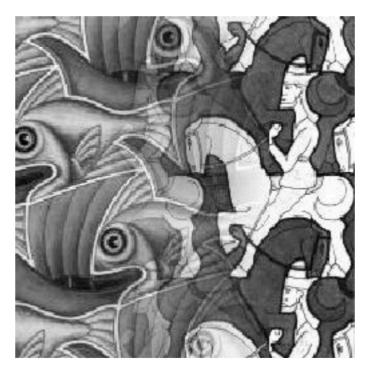
Setting alpha: center weighting

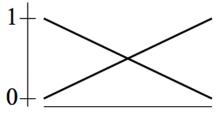


Alpha = dtrans1 / (dtrans1+dtrans2)

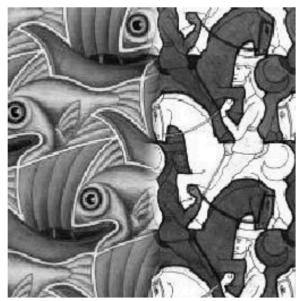
Affect of Window Size







Affect of Window Size



"Optimal" Window: smooth but not ghosted

What is the optimal window size?

To avoid seams

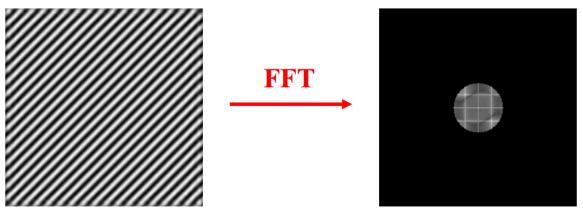
window = size of largest prominent feature

To avoid ghosting

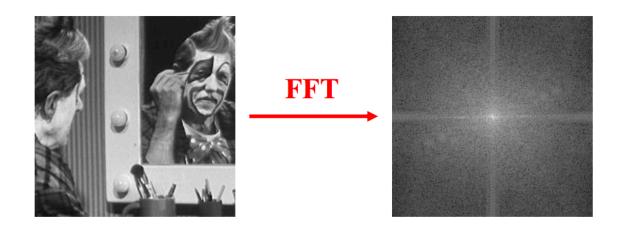
window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)



What if the Frequency Spread is Wide?



Idea (Burt and Adelson)

- Compute $F_{left} = FFT(I_{left})$, $F_{right} = FFT(I_{right})$
- Decompose Fourier image into octaves (bands)

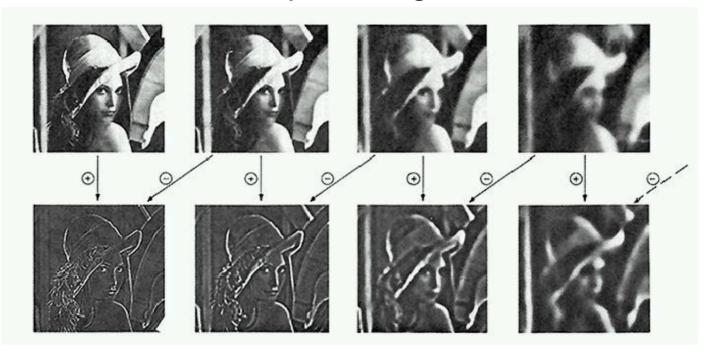
$$- F_{left} = F_{left}^{1} + F_{left}^{2} + ...$$

- Feather corresponding octaves F_{left} with F_{right}
 - Can compute inverse FFT and feather in spatial domain
- · Sum feathered octave images in frequency domain

Better implemented in spatial domain

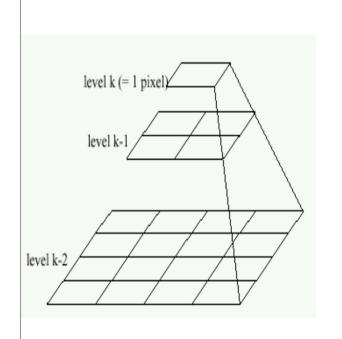
Octaves in the Spatial Domain

Lowpass Images

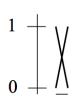


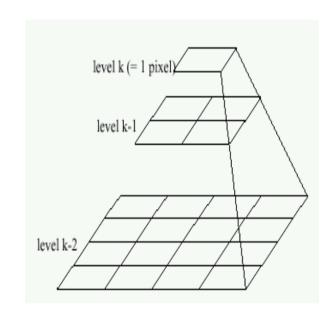
Bandpass Images

Pyramid Blending



$$\begin{array}{c}
1 + \bigvee \\
0 + \bigwedge \\
1 + \bigvee \\
0 + \bigwedge \\
\end{array}$$



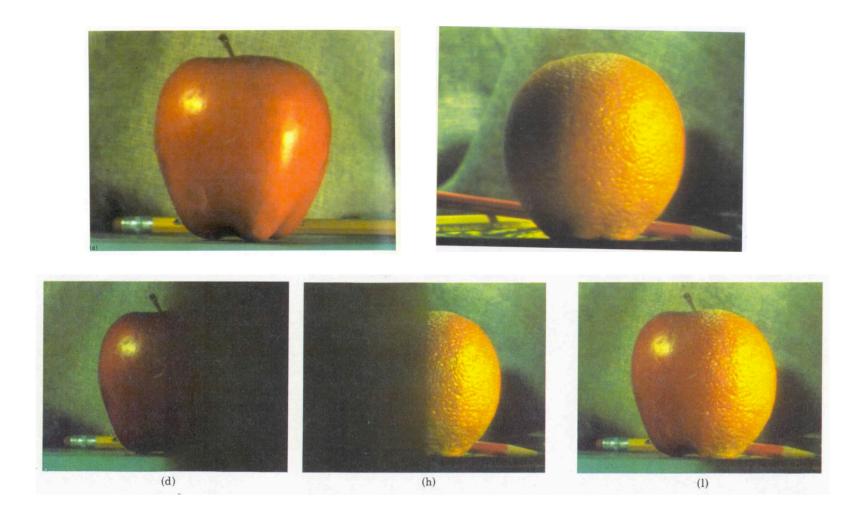


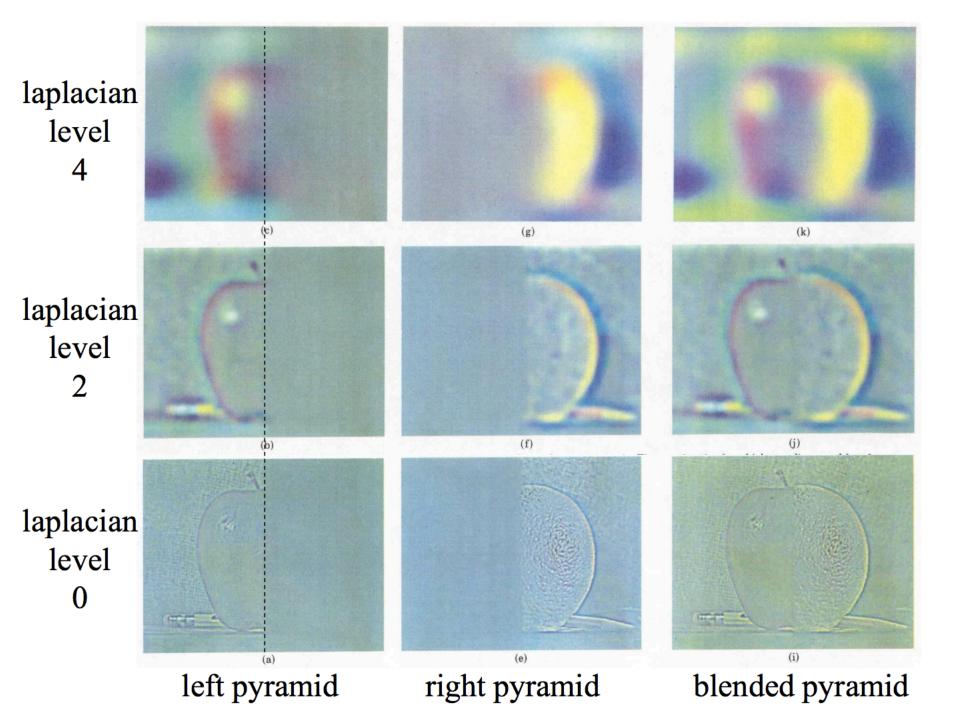
Left pyramid

blend

Right pyramid

Pyramid Blending

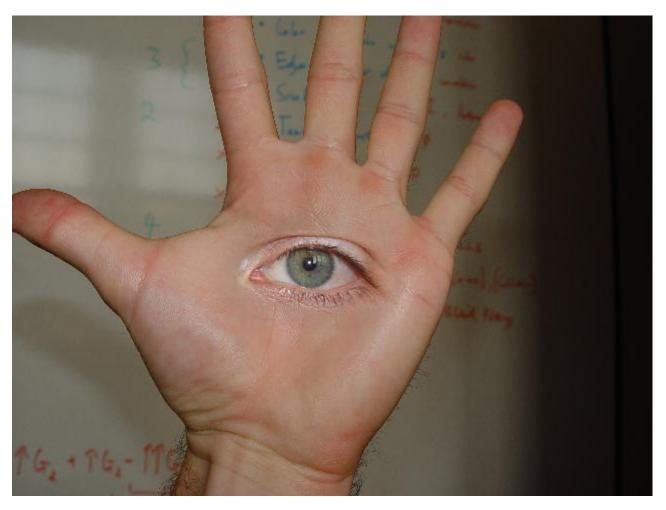




Laplacian Pyramid: Blending

- 1. Load the two images of apple and orange
- 2. Find the Gaussian Pyramids for apple and orange (in this particular example, number of levels is 6)
- 2. From Gaussian Pyramids, find their Laplacian Pyramids
- 4. Now join the left half of apple and right half of orange in each levels of Laplacian Pyramids
- 4. Finally from this joint image pyramids, reconstruct the original image.

Horror Photo! (Homework 3)



david dmartin (Boston College)

Blending Regions

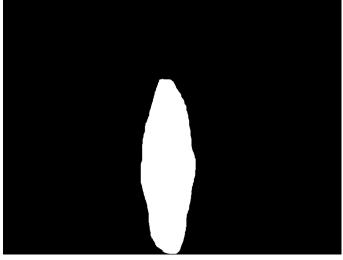
Laplacian Pyramid: Blending

General Approach:

- 1. Build Laplacian pyramids LA and LB from images A and B
- 2. Build a Gaussian pyramid GR from selected region R
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
- 4. Collapse the LS pyramid to get the final blended image

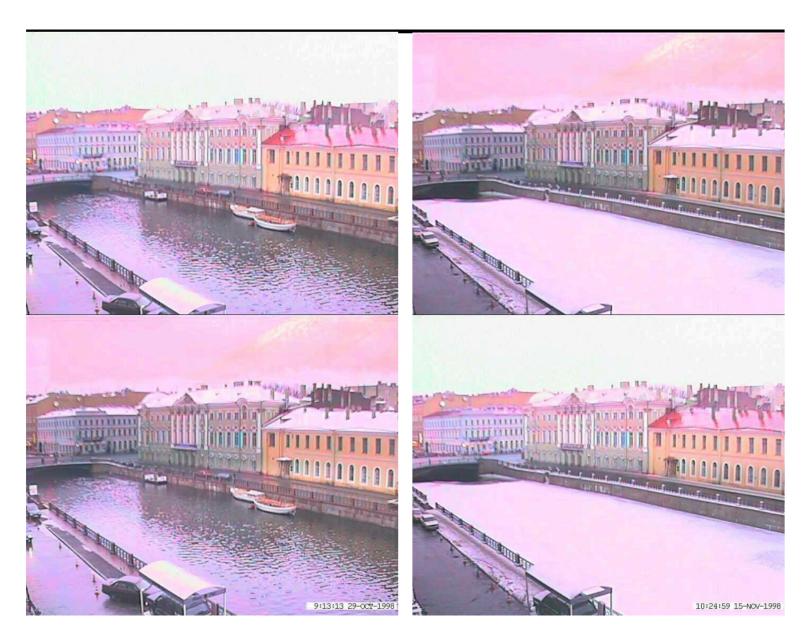
```
In Python:
  def blend(lpr_white,lpr_black,gauss_py_mask):
  Blend_pyr = []
  k = len(gauss_pyr_mask)
  for I in range(0,k):
    p1= gauss_pyr_mask[i]*lapl_pyr_white[i]
    p2=(1 - gauss_pyr_mask[i])*lapl_pyr_black[i]
    blended_pyr.append(p1 + p2)
  Return blended_pyr
```

Application: seamless scene blending



Season Blending (St. Petersberg)

Season Blending (St. Petersberg)



Take-home reading

- Image Blending:
- http://pages.cs.wisc.edu/~csverma/
 CS766 09/ImageMosaic/imagemosaic.html

- Pyramids and wavelets: Chapter 3.5 Szeliski
- Chapter 9.3, Szeliski (Gradient domain image blending)