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Motivation



Latent Variable Model

A general and powerful way to modeling complicated data
distribution

n
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Observed data points X; € RP

Unobserved latent variables U; € RY

Marginal latent distribution 7(u)

Latent-to-data distribution f(x|u)



Diagram for Latent Variable Model
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Some Well-Known Examples

Hierarchical Bayesian models
jid
Xilpi ~ N(pi,07),  pi ~ N(po, 75)

(Generalized) Linear mixed models

Yi= W8+ Zibi +¢; < Yilbi~ N(W;B+ Z;b;,X;)

bi X N(0, D)

Gaussian mixture models

X,'|{U,':C}NN(MC,ZC), P(U,':C):ﬂ'c



Related Methods

e Bayesian inference (Gelman et al., 2014)

e Based on the posterior distribution
p(uilxi) = f(xi|u)m(ui)/f(xi)

e Typically computed using Markov chain Monte Carlo (MCMC,
Gilks, Richardson, and Spiegelhalter, 1995)

e Pro: Widely used in real applications
e Pro: Elegant and well-developed statistical properties
e Con: Requires fully known m(u) and f(x|u)

e Con: High computational cost with MCMC; nontrivial to scale
to large data sets



Related Methods cont.

e The expectation-maximization algorithm (EM, Dempster,
Laird, and Rubin, 1977)

e Latent variables as “missing data”
e Computes the maximum likelihood estimator (MLE) for 6

e Pro: Allows for unknown parameters in 7(u) and f(x|u), thus
bringing more flexibility in modeling

e Con: Mostly used for point estimation
e Con: E-step does not have closed form for complicated models

e Con: M-step is also challenging for big data



Related Methods cont.

e Variational inference (Jordan et al., 1999; Blei, Kucukelbir,
and McAuliffe, 2017)

e An alternative approach for large-scale Bayesian inference
e Approximates the true posterior using a simpler distribution

e Pro: Very efficient in computation

Pro: Easy to scale to large data sets

Con: Lack of accuracy in the inference result



A (Subjective) Summary

Ease of Efficiency of Accuracy of
Modeling Computation Inference

Bayesnan Inference

EM Algorithm DGR Highly depends on
the model
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The ALMOND Framework




e A flexible and data-driven specification of the latent variable
distribution 7(u) via neural networks
e The latent-to-data distribution fy(x|u) can also contain
unknown parameters 6
e An efficient computational method based on:
e Stochastic gradient methods (Robbins and Monro, 1951;
Bottou et al., 2018)
e The Langevin sampling algorithm (Roberts et al., 1996;
Roberts and Stramer, 2002; Dalalyan, 2017)
e Theoretical guarantees on the convergence of the algorithm
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Inference Objective

e Input
e Observed data points Xi, X5,..., X,
e Latent-to-data distribution fy(x|u) up to an unknown
parameter vector 6
e OQutput
e Estimated latent variable distribution 7 (u)
e Estimate of 0: §
e Conditional distribution of the latent variable given the data

p(uilx;)

12



Modeling: Adaptive Latent Variable Distribution

e 7(u) controls the expressive power of the marginal data
distribution f(x) = [ f(x|u)m(u)du

e We specify an adaptive 7(u) through a probability
transformation U; = h,(Z;)

e Z; € R’ follows a known distribution, e.g. N(O0, /)

o hy R +— R9 is represented by a deep neural network (DNN),
where 7 contains the network parameters

° ﬁ'(u) = hﬁ
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Computation: Challenges and Solutions

e 7 and 6 can be estimated by maximizing the log-likelihood
function ¢(0, n; x) = log[f(x)]

e However, f(x) = [ f(x|u)m(u)du involves a potentially
high-dimensional integration

e A direct optimization over 1) and @ is intractable

e Our method

e First, obtain a rudimentary estimation for unknown quantities
using the efficient variational autoencoder framework (VAE,
Kingma and Welling, 2013)

e Then proceeds with a bias correction procedure to achieve a
high accuracy of the inference results

e Combines the efficiency of VAE and the accuracy of EM
algorithm
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A Bit of Background Knowledge

For any distribution g(z|x),

U(B; x) = L(B: g, x) = E;q(z1x) [log f3(x|2)] =D [q(z|x)||70(2)]

fs(x|z) = fo(x|hy(2)). B = (0,n)
Dlq||p] is the Kullback-Leibler divergence from p to g

Instead of maximizing ¢(x), VAE does the following
e Choose q(z|x) to be N(ug(x), diag(a3(x)))
e [4() and ai(-) are DNNs with parameter ¢
e Optimizes L(3; gy, x) over the parameters § and ¢
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The New Method

e VAE is fast, but biased, even with an infinite sample size
e It has the wrong target: a lower bound instead of £(3; x)
e We propose a new method that targets on the true (; x)
e Define

f
L(p, B; X) /Io B (x|2)mo(2) pB(z|x)dz
Pj (z]x)
e When 3 = 3, we have £(8, 3; x) = £(53; x)
e The quantity g(3, 5; x) = 0L(8, B; x)/dp is similar to a
gradient when 3 = 3
e We iteratively update the parameter estimate [3;:
Bry1 = Pt + ar - E(Be; x, We)
o 3(pB¢; x, W) is a stochastic approximation to g(ft, Bt; x)
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The Langevin Algorithm

e Define G(f; x,z) = Olog[fs(x|z)]/0, then
8(Bt: Bt x) = Epnpy (21x) G(Bei X, 2)

e We want to obtain a sequence of random vectors
W WM such that

B(Bri x, We) = ZG (Be x, W) = g(Be, Bei x)
ti=1

e The Langevin algorithm is simple and easy to compute:
Wt(k) = Wt(kil) +e - Vt(Wt(kil)) + V27 - fgk)

where 7; is the step size, v;(z) = 0 log[fs,(x|z)m0(2)]/0z, and
gt Ild (07 Ir)
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Theoretical Properties

Theorem
Under regularity conditions, for every t € N and any 0 < e; < 1,

there exists a constant C; > 0 such that whenever v < Ciey and
M, > ~; 2, we have

IEw, [&(Bt: x, Wi)] — g(Bt, Bes x)|| < ex
Ew, |I(8: x, We)] — g(Be, B x)II?] < et

e It shows that g(/3;; x, W;) is a biased estimator for g([5¢, 8t; x)

e But we can control its bias to any small number ¢
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Convergence Analysis

Theorem
Under regularity conditions, let {a;} and {e:} be two positive and

decreasing sequences such that 321 oy = 00, Y52, a? < oo, and

320, g2 < oo, then we have

liminf £ [|lg(Be, B x)|I%] = 0.

In particular, the above conditions hold if a; < O(t~') and
g = O(t°) for any ¢ > 0.

Moreover, if there exists a 5* such that ||g(8*, 3 x)|| = 0, then
OU(B; %)/08]3=3+ = 0.
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Numerical Experiments




Many-Normal-Means Problem

o U™ m(u), Xi|{U; = u} ~ N(u,1), i =1,2,...,1000

e Three true latent distributions
o 7= N(1,0.5?)
o m = Exp(2), mean =2
e 7=0.4-N(0,05%)+0.6-N(3,0.5%)

e Compare empirical Bayes, variational inferene, and ALMOND

20



Result

Normal Exponential Mixture of Normals
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Multivariate Copula Model

P(Ur < u1, ..., Up < upo) = C(F(u1), ..., F(u10)),
X{U = u} ~ N(u, ho)

F(u) is the c.d.f. of Gamma(2)

Clug,...,u10) = o Yp(u) + - +o(u)), p=t2-1
Study the estimates of F(u) and A(t) = ¢(t)/¢(t)

e Compare empirical Bayes, variational inferene, and ALMOND
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Result

Empirical Bayes Variational Inference ALMOND
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MNIST Data

e The well-known MNIST handwritten digits data

e Use Z ~ N(0, I) to represent the low-dimensional latent
space

e Compute the latent coordinates E(Z|X = x) for nonlinear
dimensionality reduction
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Result

e Left: Dimensionality reduction by ALMOND
e Right: Dimensionality reduction by PCA
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