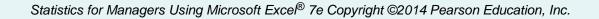
Chi-Square Tests



Learning Objectives

In this chapter, you learn:

- How and when to use the chi-square test for contingency tables
- How to test multiple proportions
- How to test for independence

Contingency Table Example

Left-Handed vs. Gender Dominant Hand: Left vs. Right Gender: Male vs. Female

- <u>2 categories</u> for each variable, so this is called a 2 x 2 table
- Suppose we examine a sample of 300 children

Contingency Table Example (continued) Sample results organized in a **contingency table**: Hand Preference sample size = n = 300: Gender Right Left 120 Females, 12 were left handed Female 12 108 120 180 Males, 24 were Male 24 156 180 left handed 36 264 300

Test for the Equality Between Proportions

- $H_0: \pi_1 = \pi_2$ (Proportion of females who are left
handed is equal to the proportion of
males who are left handed) $H_1: \pi_1 \neq \pi_2$ (The two proportions are not the same –
hand preference is not independent
of gender)
- If H₀ is true, then the proportion of left-handed females should be the same as the proportion of left-handed males. Left-handedness is then *independent* of gender.

General Problem – Test of Independence

H₀: The two categorical variables are independent (i.e., there is no relationship between them)

H₁: The two categorical variables are dependent (i.e., there is a relationship between them)

Each variable may have more than two categories, extending to contingency tables with r rows and c columns

The Chi-Square Test Statistic

The Chi-square (χ^2) test statistic is:

$$\chi^2_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

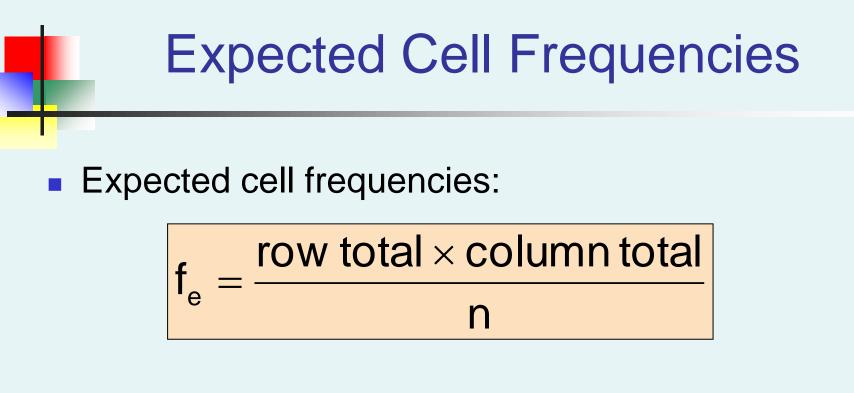
where:

 $f_o = observed$ frequency in a particular cell of the r x c table

 f_e = expected frequency in a particular cell if H_0 is true (next slide)

 χ^2_{STAT} for the r x c table has (r-1)(c-1) degrees of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 1. Otherwise, merge some categories.)

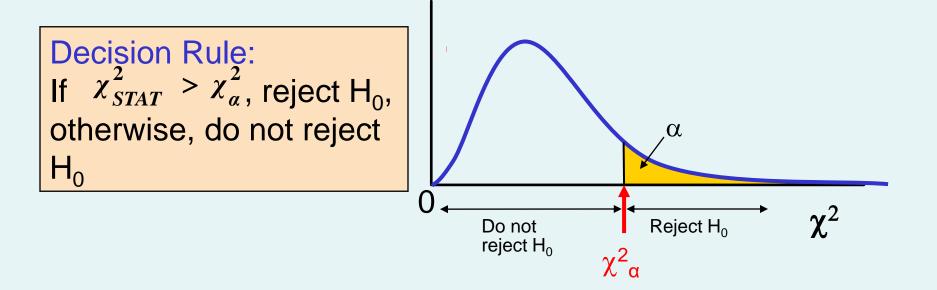


Where:

row total = sum of all frequencies in the row column total = sum of all frequencies in the column n = overall sample size

Decision Rule

The χ^2_{STAT} test statistic approximately follows a chi-squared distribution with (r - 1)(c - 1) degrees of freedom



Special case: two proportions

Example: Gender vs Lefthandedness

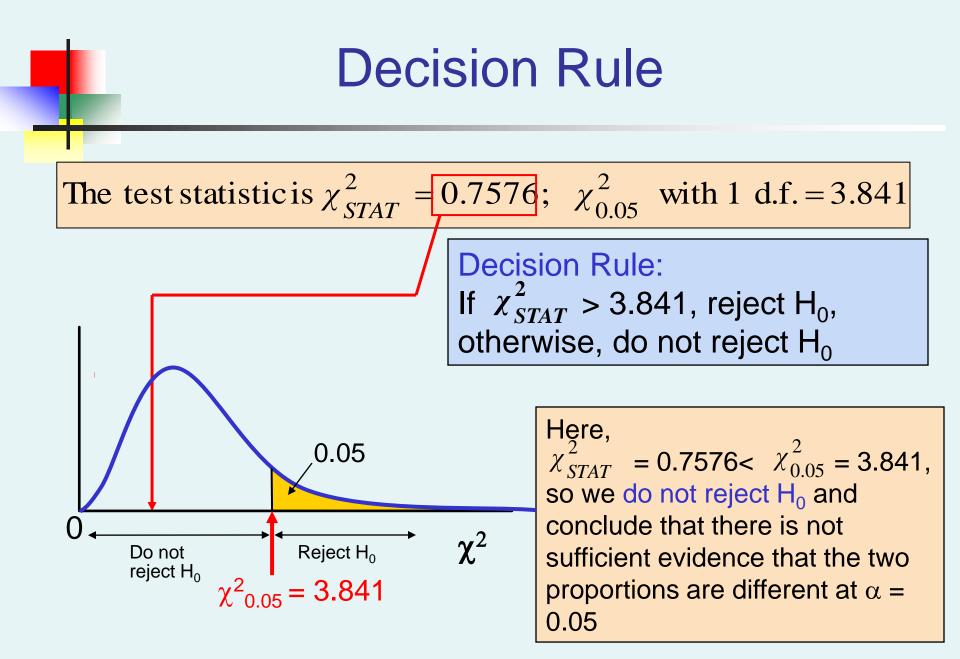
	Hand Pr			
Gender	Left	Right		
Fomolo	Observed = 12	Observed = 108	120	
Female	Expected = 14.4	Expected = 105.6	120	
Mala	Observed = 24	Observed = 156	190	
Male	Expected $= 21.6$	Expected = 158.4	180	
	36	264	300	

The Chi-Square Test Statistic

	Hand Pr			
Gender	Left Right			
Female	Observed = 12	Observed = 108	120	
гептане	Expected = 14.4	Expected = 105.6		
Male	Observed = 24	24 Observed = 156		
IVIAIE	Expected = 21.6	Expected = 158.4	180	
	36	264	300	

The test statistic is:

$$\chi^{2}_{STAT} = \sum_{\text{all cells}} \frac{\left(f_{o} - f_{e}\right)^{2}}{f_{e}}$$
$$= \frac{\left(12 - 14.4\right)^{2}}{14.4} + \frac{\left(108 - 105.6\right)^{2}}{105.6} + \frac{\left(24 - 21.6\right)^{2}}{21.6} + \frac{\left(156 - 158.4\right)^{2}}{158.4} \neq 0.7576$$



Special case: more than two proportions

More than two independent populations

Test
$$H_0: \pi_1 = \pi_2 = \dots = \pi_c$$

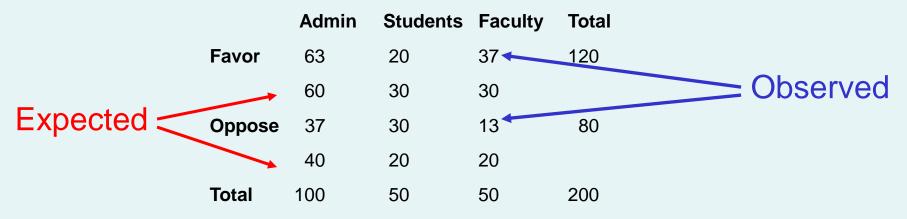
 $H_1:$ Not all of the π_j are equal (j = 1, 2, ..., c)

 χ^2_{STAT} for the 2 x c case has (2-1)(c-1) = c - 1 degrees of freedom

Example: c = 3 categories

$$H_0: \pi_1 = \pi_2 = \pi_3$$

H₁: Not all of the π_i are equal (j = 1, 2, 3)



$$\chi^2_{STAT} = 12.792 > \chi^2_{0.01} = 9.2103$$
, so reject H₀

General case of r x c table

Example: the meal plan selected by 200 students

Class	Number of meals per week			
Standing	20/week	10/week	none	Total
Fresh.	24	32	14	70
Soph.	22	26	12	60
Junior	10	14	6	30
Senior	14	16	10	40
Total	70	88	42	200

Null and alternative hypotheses

The hypothesis to be tested is:

H₀: Meal plan and class standing are independent (i.e., there is no relationship between them)
H₁: Meal plan and class standing are dependent (i.e., there is a relationship between them)

Expected Cell Frequencies

Observed:

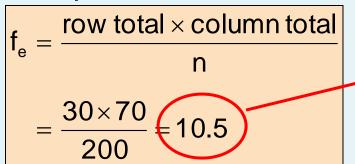
Class	Number of meals per week			
Standing	20/wk	10/wk	none	Total
Fresh.	24	32	14	70
Soph.	22	26	12	60
Junior	10	14	6	30
Senior	14	16	10	40
Total	70	88	42	200

fre

Expected cell frequencies if H₀ is true:

Class	Number of meals per week			
Standing	20/wk	10/wk	none	Total
Fresh.	24.5	30.8	14.7	70
Soph.	21.0	26.4	12.6	60
Junior	10.5	13.2	6.3	30
Senior	14.0	17.6	8.4	40
Total	70	88	42	200

Example for one cell:

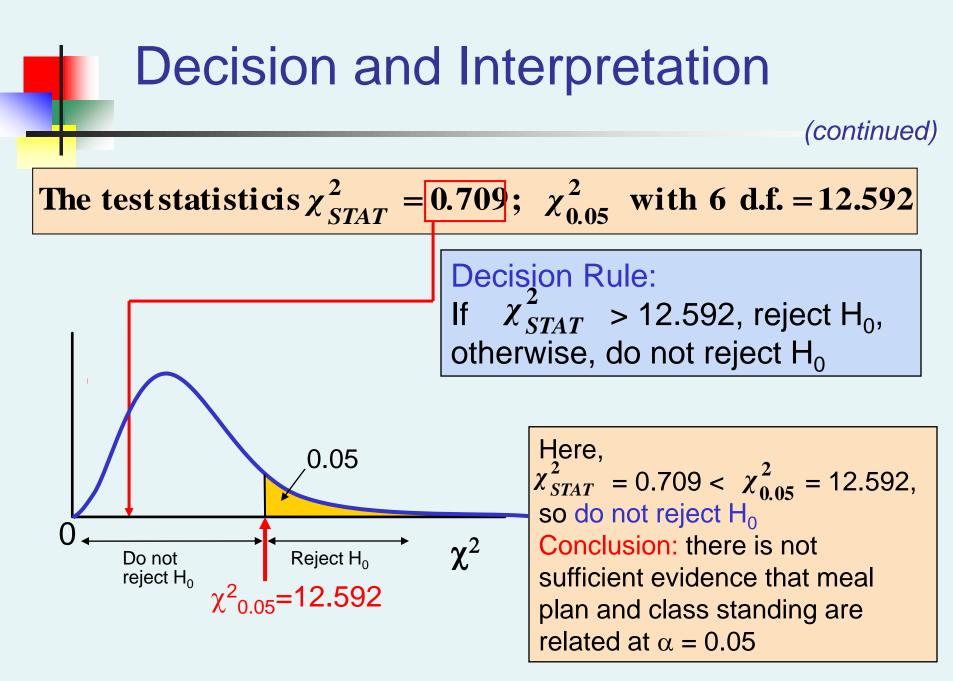


The Test Statistic

The test statistic value is:

$$\chi^{2}_{STAT} = \sum_{all \text{ cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$
$$= \frac{(24 - 24.5)^{2}}{24.5} + \frac{(32 - 30.8)^{2}}{30.8} + \dots + \frac{(10 - 8.4)^{2}}{8.4} = 0.709$$

 $\chi^2_{0.05} = 12.592$ from the chi-squared distribution with (4-1)(3-1) = 6 degrees of freedom



Chapter Summary

In this chapter we discussed

- Applying the χ^2 test for the difference between two proportions
- Applying the χ^2 test for differences in more than two proportions
- Applying the χ^2 test for independence