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In Chapters 8, 9, and 10, we were concerned about the distribution of one random variable,
its parameters, expectation, variance, median, symmetry, skewness, etc. In this chapter, we
study relations among variables.

Many variables observed in real life are related. The type of their relation can often be
expressed in a mathematical form called regression. Establishing and testing such a relation
enables us:

– to understand interactions, causes, and effects among variables;

– to predict unobserved variables based on the observed ones;

– to determine which variables significantly affect the variable of interest.
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11.1 Least squares estimation

Regression models relate a response variable to one or several predictors. Having observed
predictors, we can forecast the response by computing its conditional expectation, given all
the available predictors.

DEFINITION 11.1

Response or dependent variable Y is a variable of interest that we predict
based on one or several predictors.

Predictors or independent variables X(1), . . . , X(k) are used to predict the
values and behavior of the response variable Y .

Regression of Y on X(1), . . . , X(k) is the conditional expectation,

G(x(1), . . . , x(k)) = E
{
Y | X(1) = x(1), . . . , X(k) = x(k)

}
.

It is a function of x(1), . . . , x(k) whose form can be estimated from data.

11.1.1 Examples

Consider several situations when we can predict a dependent variable of interest from inde-
pendent predictors.

Example 11.1 (World population). According to the International Data Base of the
U.S. Census Bureau, population of the world grows according to Table 11.1. How can we
use these data to predict the world population in years 2015 and 2020?

Figure 11.1 shows that the population (response) is tightly related to the year (predictor),

population ≈ G(year).

It increases every year, and its growth is almost linear. If we estimate the regression function
G relating our response and our predictor (see the dotted line on Figure 11.1) and extend

Year
Population
mln. people

Year
Population
mln. people

Year
Population
mln. people

1950 2558 1975 4089 2000 6090
1955 2782 1980 4451 2005 6474
1960 3043 1985 4855 2010 6864
1965 3350 1990 5287 2015 ?
1970 3712 1995 5700 2020 ?

TABLE 11.1: Population of the world, 1950–2020.



Regression 363

1950 1960 1970 1980 1990 2000 2010 2020
0

1000

2000

3000

4000

5000

6000

7000

8000

Year

W
or

ld
 p

op
ul

at
io

n,
 m

ln
.

Observed population

Regression line

Computed forecast

FIGURE 11.1: World population in 1950–2010 and its regression forecast for 2015 and 2020.

its graph to the year 2020, the forecast is ready. We can simply compute G(2015) and and
G(2020).

A straight line that fits the observed data for years 1950–2010 predicts the population of
7.15 billion in 2015 and 7.52 billion in 2020. It also shows that between 2010 and 2015,
around the year 2012, the world population reaches the historical mark of 7 billion. ♦

How accurate is the forecast obtained in this example? The observed population during
1950–2010 appears rather close to the estimated regression line in Figure 11.1. It is reason-
able to hope that it will continue to do so through 2020.

The situation is different in the next example.

Example 11.2 (House prices). Seventy house sale prices in a certain county are depicted
in Figure 11.2 along with the house area.

First, we see a clear relation between these two variables, and in general, bigger houses are
more expensive. However, the trend no longer seems linear.

Second, there is a large amount of variability around this trend. Indeed, area is not the
only factor determining the house price. Houses with the same area may still be priced
differently.

Then, how can we estimate the price of a 3200-square-foot house? We can estimate the
general trend (the dotted line in Figure 11.2) and plug 3200 into the resulting formula, but
due to obviously high variability, our estimation will not be as accurate as in Example 11.1.

♦

To improve our estimation in the last example, we may take other factors into account:
the number of bedrooms and bathrooms, the backyard area, the average income of the
neighborhood, etc. If all the added variables are relevant for pricing a house, our model
will have a closer fit and will provide more accurate predictions. Regression models with
multiple predictors are studied in Section 11.3.
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FIGURE 11.2: House sale prices and their footage.

11.1.2 Method of least squares

Our immediate goal is to estimate the regression function G that connects response
variable Y with predictors X(1), . . . , X(k). First we focus on univariate regression predicting
response Y based on one predictor X . The method will be extended to k predictors in
Section 11.3.

In univariate regression, we observe pairs (x1, y1), . . . , (xn, yn), shown in Figure 11.3a.

For accurate forecasting, we are looking for the function Ĝ(x) that passes as close as possible
to the observed data points. This is achieved by minimizing distances between observed data
points

y1, . . . , yn

and the corresponding points on the fitted regression line,

ŷ1 = Ĝ(x1), . . . , ŷn = Ĝ(xn)

(see Figure 11.3b). Method of least squares minimizes the sum of squared distances.

DEFINITION 11.2

Residuals
ei = yi − ŷi

are differences between observed responses yi and their fitted values ŷi =
Ĝ(xi).

Method of least squares finds a regression function Ĝ(x) that minimizes the
sum of squared residuals

n∑

i=1

e2i =

n∑

i=1

(yi − ŷi)
2
. (11.1)
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FIGURE 11.3: Least squares estimation of the regression line.

Function Ĝ is usually sought in a suitable form: linear, quadratic, logarithmic, etc. The
simplest form is linear.

11.1.3 Linear regression

Linear regression model assumes that the conditional expectation

G(x) = E {Y | X = x} = β0 + β1 x

is a linear function of x. As any linear function, it has an intercept β0 and a slope β1.

The intercept
β0 = G(0)

equals the value of the regression function for x = 0. Sometimes it has no physical meaning.
For example, nobody will try to predict the value of a computer with 0 random access
memory (RAM), and nobody will consider the Federal reserve rate in year 0. In other
cases, intercept is quite important. For example, according to the Ohm’s Law (V = RI)
the voltage across an ideal conductor is proportional to the current. A non-zero intercept
(V = V0 + R I) would show that the circuit is not ideal, and there is an external loss of
voltage.

The slope
β1 = G(x+ 1)−G(x)

is the predicted change in the response variable when predictor changes by 1. This is a very
important parameter that shows how fast we can change the expected response by varying
the predictor. For example, customer satisfaction will increase by β1(∆x) when the quality
of produced computers increases by (∆x).

A zero slope means absence of a linear relationship between X and Y . In this case, Y is
expected to stay constant when X changes.
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Estimation in linear regression

Let us estimate the slope and intercept by method of least squares. Following (11.1), we
minimize the sum of squared residuals

Q =

n∑

i=1

(yi − ŷi)
2
=

n∑

i=1

(
yi − Ĝ(xi)

)2
=

n∑

i=1

(yi − β0 − β1 xi)
2
.

We can do it by taking partial derivatives of Q, equating them to 0, and solving the resulting
equations for β0 and β1.

The partial derivatives are

∂Q

∂β0
= −2

n∑

i=1

(yi − β0 − β1 xi) ;

∂Q

∂β1
= −2

n∑

i=1

(yi − β0 − β1 xi)xi.

Equating them to 0, we obtain so-called normal equations,





n∑

i=1

(yi − β0 − β1 xi) = 0

n∑

i=1

xi (yi − β0 − β1 xi) = 0

From the first normal equation,

β0 =

∑
yi − β1

∑
xi

n
= ȳ − β1x̄. (11.2)

Substituting this into the second normal equation, we get

n∑

i=1

xi (yi − β0 − β1 xi) =

n∑

i=1

xi ((yi − ȳ)− β1(xi − x̄)) = Sxy − β1 Sxx = 0, (11.3)

where

Sxx =

n∑

i=1

xi(xi − x̄) =

n∑

i=1

(xi − x̄)2 (11.4)

and

Sxy =

n∑

i=1

xi(yi − ȳ) =

n∑

i=1

(xi − x̄)(yi − ȳ) (11.5)

are sums of squares and cross-products. Notice that it is all right to subtract x̄ from xi in
the right-hand sides of (11.4) and (11.5) because

∑
(xi − x̄) = 0 and

∑
(yi − ȳ) = 0.

Finally, we obtain the least squares estimates of intercept β0 and slope β1 from (11.2)
and (11.3).
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Regression
estimates

b0 = β̂0 = ȳ − b1 x̄

b1 = β̂1 = Sxy/Sxx

where

Sxx =

n∑

i=1

(xi − x̄)2

Sxy =

n∑

i=1

(xi − x̄)(yi − ȳ)

(11.6)

Example 11.3 (World population). In Example 11.1, xi is the year, and yi is the world
population during that year. To estimate the regression line in Figure 11.1, we compute

x̄ = 1980; ȳ = 4558.1;

Sxx = (1950− x̄)2 + . . .+ (2010− x̄)2 = 4550;

Sxy = (1950− x̄)(2558− ȳ) + . . .+ (2010− x̄)(6864− ȳ) = 337250.

Then

b1 = Sxy/Sxx = 74.1

b0 = ȳ − b1x̄ = −142201.

The estimated regression line is

Ĝ(x) = b0 + b1 x = -142201 + 74.1x.

We conclude that the world population grows at the average rate of 74.1 million every year.

We can use the obtained equation to predict the future growth of the world population.
Regression predictions for years 2015 and 2020 are

Ĝ(2015) = b0 + 2015 b1 = 7152 million people

Ĝ(2020) = b0 + 2020 b1 = 7523 million people

♦

11.1.4 Regression and correlation

Recall from Section 3.3.5 that covariance

Cov(X,Y ) = E(X − E(X))(Y − E(Y ))

and correlation coefficient

ρ =
Cov(X,Y )

( StdX)( StdY )
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measure the direction and strength of a linear relationship between variables X and Y .
From observed data, we estimate Cov(X,Y ) and ρ by the sample covariance

sxy =

n∑

i=1

(xi − x̄)(yi − ȳ)

n− 1

(it is unbiased for the population covariance) and the sample correlation coefficient

r =
sxy
sxsy

, (11.7)

where

sx =

√∑
(xi − x̄)2

n− 1
and sy =

√∑
(yi − ȳ)2

n− 1

are sample standard deviations of X and Y .

Comparing (11.3) and (11.7), we see that the estimated slope b1 and the sample regression
coefficient r are proportional to each other. Now we have two new formulas for the regression
slope.

Estimated
regression slope

b1 =
Sxy

Sxx
=

sxy
s2x

= r

(
sy
sx

)

Like the correlation coefficient, regression slope is positive for positively correlated X and
Y and negative for negatively correlated X and Y . The difference is that r is dimensionless
whereas the slope is measured in units of Y per units of X . Thus, its value by itself does
not indicate whether the dependence is weak or strong. It depends on the units, the scale
of X and Y . We test significance of the regression slope in Section 11.2.

11.1.5 Overfitting a model

Among all possible straight lines, the method of least squares chooses one line that is closest
to the observed data. Still, as we see in Figure 11.3b, we did have some residuals ei = (yi−ŷi)
and some positive sum of squared residuals. The straight line has not accounted for all 100%
of variation among yi.

Why, one might ask, have we considered only linear models? As long as all xi are different,
we can always find a regression function Ĝ(x) that passes through all the observed points
without any error. Then, the sum

∑
e2i = 0 will truly be minimized!

Trying to fit the data perfectly is a rather dangerous habit. Although we can achieve an
excellent fit to the observed data, it never guarantees a good prediction. The model will be
overfitted, too much attached to the given data. Using it to predict unobserved responses
is very questionable (see Figure 11.4a,b).
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FIGURE 11.4: Regression-based prediction.

11.2 Analysis of variance, prediction, and further inference

In this section, we

– evaluate the goodness of fit of the chosen regression model to the observed data,

– estimate the response variance,

– test significance of regression parameters,

– construct confidence and prediction intervals.

11.2.1 ANOVA and R-square

Analysis of variance (ANOVA) explores variation among the observed responses. A
portion of this variation can be explained by predictors. The rest is attributed to “error.”

For example, there exists some variation among the house sale prices on Figure 11.2. Why
are the houses priced differently? Well, the price depends on the house area, and bigger
houses tend to be more expensive. So, to some extent, variation among prices is explained
by variation among house areas. However, two houses with the same area may still have
different prices. These differences cannot be explained by the area.

The total variation among observed responses is measured by the total sum of squares

SSTOT =

n∑

i=1

(yi − ȳ)2 = (n− 1)s2y.

This is the variation of yi about their sample mean regardless of our regression model.

A portion of this total variation is attributed to predictor X and the regression model
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connecting predictor and response. This portion is measured by the regression sum of
squares

SSREG =
n∑

i=1

(ŷi − ȳ)2.

This is the portion of total variation explained by the model. It is often computed as

SSREG =

n∑

i=1

(b0 + b1xi − ȳ)2

=

n∑

i=1

(ȳ − b1x̄+ b1xi − ȳ)2

=
n∑

i=1

b21(xi − x̄)2

= b21Sxx or (n− 1)b21s
2
x.

The rest of total variation is attributed to “error.” It is measured by the error sum of
squares

SSERR =

n∑

i=1

(yi − ŷi)
2 =

n∑

i=1

e2i .

This is the portion of total variation not explained by the model. It equals the sum of
squared residuals that the method of least squares minimizes. Thus, applying this method,
we minimize the error sum of squares.

Regression and error sums of squares partition SSTOT into two parts (Exercise 11.6),

SSTOT = SSREG + SSERR.

The goodness of fit, appropriateness of the predictor and the chosen regression model can
be judged by the proportion of SSTOT that the model can explain.

DEFINITION 11.3

R-square, or coefficient of determination is the proportion of the total
variation explained by the model,

R2 =
SSREG

SSTOT
.

It is always between 0 and 1, with high values generally suggesting a good fit.

In univariate regression, R-square also equals the squared sample correlation coefficient
(Exercise 11.7),

R2 = r2.

Example 11.4 (World population, continued). Continuing Example 11.3, we find

SSTOT = (n− 1)s2y = (12)(2.093 · 106) = 2.512 · 107,
SSREG = b21Sxx = (74.1)2(4550) = 2.500 · 107,
SSERR = SSTOT − SSREG = 1.2 · 105.
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A linear model for the growth of the world population has a very high R-square of

R2 =
SSREG

SSTOT
= 0.995 or 99.5%.

This is a very good fit although some portion of the remaining 0.5% of total variation can
still be explained by adding non-linear terms into the model. ♦

11.2.2 Tests and confidence intervals

Methods of estimating a regression line and partitioning the total variation do not rely on
any distribution; thus, we can apply them to virtually any data.

For further analysis, we introduce standard regression assumptions. We will assume
that observed responses yi are independent Normal random variables with mean

E(Yi) = β0 + β1 xi

and constant variance σ2. Predictors xi are considered non-random.

As a consequence, regression estimates b0 and b1 have Normal distribution. After we estimate
the variance σ2, they can be studied by T-tests and T-intervals.

Degrees of freedom and variance estimation

According to the standard assumptions, responses Y1, . . . , Yn have different means but the
same variance. This variance equals the mean squared deviation of responses from their
respective expectations. Let us estimate it.

First, we estimate each expectation E(Yi) = G(xi) by

Ĝ(xi) = b0 + b1xi = ŷi.

Then, we consider deviations ei = yi − ŷi, square them, and add. We obtain the error sum
of squares

SSERR =

n∑

i=1

e2i .

It remains to divide this sum by its number of degrees of freedom (this is how we estimated
variances in Section 8.2.4).

Let us compute degrees of freedom for all three SS in the regression ANOVA.

The total sum of squares SSTOT = (n− 1)s2y has dfTOT = n− 1 degrees of freedom because
it is computed directly from the sample variance s2y.

Out of them, the regression sum of squares SSREG has dfREG = 1 degree of freedom.
Recall (from Section 9.3.4, p. 261) that the number of degrees of is the dimension of the
corresponding space. Regression line, which is just a straight line, has dimension 1.

This leaves dfERR = n− 2 degrees of freedom for the error sum of squares, so that

dfTOT = dfREG + dfERR.
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The error degrees of freedom also follow from formula (9.10),

dfERR = sample size − number of estimated
location parameters

= n− 2,

with 2 degrees of freedom deducted for 2 estimated parameters, β0 and β1.

Equipped with this, we now estimate the variance.

Regression
variance

s2 =
SSERR

n− 2

It estimates σ2 = Var(Y ) unbiasedly.

Remark: Notice that the usual sample variance

s2y =
SSTOT

n− 1
=

∑
(yi − ȳ)2

n− 1

is biased because ȳ no longer estimates the expectation of Yi.

A standard way to present analysis of variance is the ANOVA table.

Univariate
ANOVA

Source Sum of
squares

Degrees of
freedom

Mean
squares

F

Model
SSREG

=
∑

(ŷi − ȳ)2
1

MSREG

= SSREG

MSREG

MSERR

Error
SSERR

=
∑

(yi − ŷi)
2

n− 2
MSERR

=
SSERR

n− 2

Total
SSTOT

=
∑

(yi − ȳ)2
n− 1

Mean squares MSREG and MSERR are obtained from the corresponding sums of squares
dividing them by their degrees of freedom. We see that the sample regression variance is
the mean squared error,

s2 = MSERR.

The estimated standard deviation s is usually called root mean squared error or RMSE.

The F-ratio

F =
MSREG

MSERR

is used to test significance of the entire regression model.
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Inference about the regression slope

Having estimated the regression variance σ2, we can proceed with tests and confidence
intervals for the regression slope β1. As usually, we start with the estimator of β1 and its
sampling distribution.

The slope is estimated by

b1 =
Sxy

Sxx
=

∑
(xi − x̄)(yi − ȳ)

Sxx
=

∑
(xi − x̄)yi
Sxx

(we can drop ȳ because it is multiplied by
∑

(xi − x̄) = 0).

According to standard regression assumptions, yi are Normal random variables and xi are
non-random. Being a linear function of yi, the estimated slope b1 is also Normal with the
expectation

E(b1) =

∑
(xi − x̄)E(yi)

Sxx
=

∑
(xi − x̄)(β0 + β1xi)

Sxx
=

∑
(xi − x̄)2(β1)∑
(xi − x̄)2

= β1,

(which shows that b1 is an unbiased estimator of β1), and the variance

Var(b1) =

∑
(xi − x̄)2 Var(yi)

S2
xx

=

∑
(xi − x̄)2σ2

S2
xx

=
σ2

Sxx
.

Summarizing the results,

Sampling distribution
of a regression slope

b1 is Normal(µb, σb),

where

µb = E(b1) = β1

σb = Std(b1) =
σ√
Sxx

We estimate the standard error of b1 by

s(b1) =
s√
Sxx

,

and therefore, use T-intervals and T-tests.

Following the general principles, a (1− α)100% confidence interval for the slope is

Estimator± tα/2




estimated
st. deviation

of the estimator


 = b1 ± tα/2

s√
Sxx

.

Testing hypotheses H0 : β1 = B about the regression slope, use the T-statistic

t =
b1 −B

s(b1)
=

b1 −B

s/
√
Sxx

.
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P-values, acceptance and rejection regions are computed from Table A5 in the Appendix,
T-distribution with (n − 2) degrees of freedom. These are degrees of freedom used in the
estimation of σ2.

As always, the form of the alternative hypothesis determines whether it is a two-sided,
right-tail, or left-tail test.

A non-zero slope indicates significance of the model, relevance of predictorX in the inference
about response Y , and existence of a linear relation among them. It means that a change
in X causes changes in Y . In the absence of such relation, E(Y ) = β0 remains constant.

To see if X is significant for the prediction of Y , test the null hypothesis

H0 : β1 = 0 vs Ha : β1 6= 0.

ANOVA F-test

A more universal, and therefore, more popular method of testing significance of a model is
the ANOVA F-test. It compares the portion of variation explained by regression with the
portion that remains unexplained. Significant models explain a relatively large portion.

Each portion of the total variation is measured by the corresponding sum of squares, SSREG

for the explained portion and SSERR for the unexplained portion (error). Dividing each SS
by the number of degrees of freedom, we obtain mean squares,

MSREG =
SSREG

dfREG
=

SSREG

1
= SSREG

and

MSERR =
SSERR

dfERR
=

SSERR

n− 2
= s2.

Under the null hypothesis
H0 : β1 = 0,

both mean squares, MSREG and MSERR are independent, and their ratio

F =
MSR

MSE
=

SSR

s2

has F-distribution with dfREG = 1 and dfERR = n− 2 degrees of freedom (d.f.).

As we discovered in Section 9.5.4, this F-distribution has two parameters, numerator d.f.
and denominator d.f., and it is very popular for testing ratios of variances and significance
of models. Its critical values for the most popular significance levels between α = 0.001 and
α = 0.25 are tabulated in Table A7.

ANOVA F-test is always one-sided and right-tail because only large values of the F-statistic
show a large portion of explained variation and the overall significance of the model.
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F-test and T-test

We now have two tests for the model significance, a T-test for the regression slope and the
ANOVA F-test. For the univariate regression, they are absolutely equivalent. In fact, the
F-statistic equals the squared T-statistic for testing H0 : β1 = 0 because

t2 =
b21

s2/Sxx
=

(Sxy/Sxx)
2

s2/Sxx
=

S2
xy

SxxSyy

Syy

s2
=

r2SSTOT

s2
=

SSREG

s2
= F.

Hence, both tests give us the same result.

Example 11.5 (Assumption of independence). Can we apply the introduced meth-
ods to Examples 11.1–11.3? For the world population data in Example 11.1, the sample
correlation coefficient between residuals ei and ei−1 is 0.78, which is rather high. Hence, we
cannot assume independence of yi, and one of the standard assumptions is violated.

Our least squares regression line is still correct; however, in order to proceed with tests and
confidence intervals, we need more advanced time series methods accounting not only for
the variance but also for covariances among the observed responses.

For the house prices in Example 11.2, there is no evidence of any dependence. These 70
houses are sampled at random, and they are likely to be priced independently of each other.

♦

Remark: Notice that we used residuals ei = yi − ŷi for the correlation study. Indeed, according to

our regression model, responses yi have different expected values, so their sample mean ȳ does not

estimate the population mean of any of them; therefore, the sample correlation coefficient based on

that mean is misleading. On the other hand, if the linear regression model is correct, all residuals

have the same mean E(ei) = 0. In the population, the difference between yi and εi is non-random,

yi − εi = G(xi); therefore, the population correlation coefficients between yi and yj and between

εi and εj are the same.

Example 11.6 (Efficiency of computer programs). A computer manager needs to
know how efficiency of her new computer program depends on the size of incoming data.
Efficiency will be measured by the number of processed requests per hour. Applying the
program to data sets of different sizes, she gets the following results,

Data size (gigabytes), x 6 7 7 8 10 10 15

Processed requests, y 40 55 50 41 17 26 16

In general, larger data sets require more computer time, and therefore, fewer requests are
processed within 1 hour. The response variable here is the number of processed requests
(y), and we attempt to predict it from the size of a data set (x).

(a) Estimation of the regression line. We can start by computing

n = 7, x̄ = 9, ȳ = 35, Sxx = 56, Sxy = −232, Syy = 1452.

Estimate regression slope and intercept by

b1 =
Sxy

Sxx
= −4.14 and b0 = ȳ − b1x̄ = 72.3.
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Then, the estimated regression line has an equation

y = 72.3− 4.14x.

Notice the negative slope. It means that increasing incoming data sets by 1 gigabyte,
we expect to process 4.14 fewer requests per hour.

(b) ANOVA table and variance estimation. Let us compute all components of the
ANOVA. We have

SSTOT = Syy = 1452

partitioned into

SSREG = b21Sxx = 961 and SSERR = SSTOT − SSREG = 491.

Simultaneously, n−1 = 6 degrees of freedom of SSTOT are partitioned into dfREG = 1
and dfERR = 5 degrees of freedom.

Fill the rest of the ANOVA table,

Source
Sum of
squares

Degrees of
freedom

Mean
squares F

Model 961 1 961 9.79
Error 491 5 98.2
Total 1452 6

Regression variance σ2 is estimated by

s2 = MSERR = 98.2.

R-square is

R2 =
SSREG

SSTOT
=

961

1452
= 0.662.

That is, 66.2% of the total variation of the number of processed requests is explained
by sizes of data sets only.

(c) Inference about the slope. Is the slope statistically significant? Does the number
of processed requests really depend on the size of data sets? To test the null hypothesis
H0 : β1 = 0, compute the T-statistic

t =
b1√

s2/Sxx

=
−4.14√
98.2/56

= −3.13.

Checking the T-distribution table (Table A5) with 5 d.f., we find that the P-value for
the two-sided test is between 0.02 and 0.04. We conclude that the slope is moderately
significant. Precisely, it is significant at any level α ≥ 0.04 and not significant at any
α ≤ 0.02.

(d) ANOVA F-test. A similar result is suggested by the F-test. From Table A7, the
F-statistic of 9.79 is not significant at the 0.025 level, but significant at the 0.05 level.

♦
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11.2.3 Prediction

One of the main applications of regression analysis is making forecasts, predictions of the
response variable Y based on the known or controlled predictors X .

Let x∗ be the value of the predictor X . The corresponding value of the response Y is
computed by evaluating the estimated regression line at x∗,

ŷ∗ = Ĝ(x∗) = b0 + b1x∗.

This is how we predicted the world population in years 2015 and 2020 in Example 11.3.
As happens with any forecast, our predicted values are understood as the most intelligent
guesses, and not as guaranteed exact sizes of the population during these years.

How reliable are regression predictions, and how close are they to the real true values? As
a good answer, we can construct

– a (1− α)100% confidence interval for the expectation

µ∗ = E(Y | X = x∗)

and

– a (1− α)100% prediction interval for the actual value of Y = y∗ when X = x∗.

Confidence interval for the mean of responses

The expectation
µ∗ = E(Y | X = x∗) = G(x∗) = β0 + β1x∗

is a population parameter. This is the mean response for the entire subpopulation of units
where the independent variable X equals x∗. For example, it corresponds to the average
price of all houses with the area x∗ = 2500 square feet.

First, we estimate µ∗ by

ŷ∗ = b0 + b1x∗

= ȳ − b1x̄+ b1x∗

= ȳ + b1(x∗ − x̄)

=
1

n

∑
yi +

∑
(xi − x̄)yi
Sxx

(x∗ − x̄)

=

n∑

i=1

(
1

n
+

∑
(xi − x̄)

Sxx
(x∗ − x̄)

)
yi.

We see again that the estimator is a linear function of responses yi. Then, under standard
regression assumptions, ŷ∗ is Normal, with expectation

E(ŷ∗) = Eb0 + Eb1x∗ = β0 + β1x∗ = µ∗
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(it is unbiased), and variance

Var(ŷ∗) =
∑(

1

n
+

∑
(xi − x̄)

Sxx
(x∗ − x̄)

)2

Var(yi)

= σ2

(
n∑

i=1

1

n2
+ 2

n∑

i=1

(xi − x̄)
x∗ − x̄

Sxx
+

Sxx(x∗ − x̄)2

S2
xx

)

= σ2

(
1

n
+

(x∗ − x̄)2

Sxx

)
(11.8)

(because
∑

(xi − x̄) = 0).

Then, we estimate the regression variance σ2 by s2 and obtain the following confidence
interval.

(1− α)100% confidence
interval for the mean
µ∗ = E(Y | X = x∗)

of all responses with X = x∗

b0 + b1x∗ ± tα/2 s

√
1

n
+

(x∗ − x̄)2

Sxx

Prediction interval for the individual response

Often we are more interested in predicting the actual response rather than the mean of all
possible responses. For example, we may be interested in the price of one particular house
that we are planning to buy, not in the average price of all similar houses.

Instead of estimating a population parameter, we are now predicting the actual value of a
random variable.

DEFINITION 11.4

An interval [a, b] is a (1 − α)100% prediction interval for the individual
response Y corresponding to predictor X = x∗ if it contains the value of Y
with probability (1− α),

P {a ≤ Y ≤ b | X = x∗} = 1− α.

This time, all three quantities, Y , a, and b, are random variables. Predicting Y by ŷ∗,
estimating the standard deviation

Std(Y − ŷ∗) =
√

Var(Y ) + Var(ŷ∗) = σ

√
1 +

1

n
+

(x∗ − x̄)2

Sxx
(11.9)

by

Ŝtd(Y − ŷ∗) = s

√
1 +

1

n
+

(x∗ − x̄)2

Sxx
,
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and standardizing all three parts of the inequality

a ≤ Y ≤ b,

we realize that the (1− α)100% prediction interval for Y has to satisfy the equation

P

{
a− ŷ∗

Ŝtd(Y − ŷ∗)
≤ Y − ŷ∗

Ŝtd(Y − ŷ∗)
≤ b− ŷ∗

Ŝtd(Y − ŷ∗)

}
= 1− α.

At the same time, the properly standardized (Y − ŷ∗) has T -distribution, and

P

{
−tα/2 ≤ Y − ŷ∗

Ŝtd(Y − ŷ∗)
≤ tα/2

}
= 1− α.

A prediction interval is now computed by solving equations

a− ŷ∗

Ŝtd(Y − ŷ∗)
= −tα/2 and

b− ŷ∗

Ŝtd(Y − ŷ∗)
= tα/2

in terms of a and b.

(1 − α)100% prediction interval
for the individual response Y

when X = x∗

b0 + b1x∗ ± tα/2 s

√
1 +

1

n
+

(x∗ − x̄)2

Sxx
(11.10)

Several conclusions are apparent from this.

First, compare the standard deviations in (11.8) and (11.9). Response Y that we are pre-
dicting made its contribution into the variance. This is the difference between a confidence
interval for the mean of all responses and a prediction interval for the individual response.
Predicting the individual value is a more difficult task; therefore, the prediction interval
is always wider than the confidence interval for the mean response. More uncertainty is
involved, and as a result, the margin of a prediction interval is larger than the margin of a
confidence interval.

Second, we get more accurate estimates and more accurate predictions from large samples.
When the sample size n (and therefore, typically, Sxx), tends to ∞, the margin of the
confidence interval converges to 0.

On the other hand, the margin of a prediction interval converges to (tα/2σ). As we collect
more and more observations, our estimates of b0 and b1 become more accurate; however,
uncertainty about the individual response Y will never vanish.

Third, we see that regression estimation and prediction are most accurate when x∗ is close
to x̄ so that

(x∗ − x̄)2 ≈ 0.

The margin increases as the independent variable x∗ drifts away from x̄. We conclude that
it is easiest to make forecasts under normal and “standard” conditions, and it is hardest to
predict anomalies. And this agrees with our common sense.
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Predictor: size of incoming data (gigabytes)
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FIGURE 11.5: Regression prediction of program efficiency.

Example 11.7 (Predicting the program efficiency). Suppose we need to start pro-
cessing requests that refer to x∗ = 16 gigabytes of data. Based on our regression analysis of
the program efficiency in Example 11.6, we predict

y∗ = b0 + b1x∗ = 72.3− 4.14(16) = 6

requests processed within 1 hour. A 95% prediction interval for the number of processed
requests is

y∗ ± t0.025 s

√
1 +

1

n
+

(x∗ − x̄)2

Sxx
= 6± (2.571)

√
98.2

√
1 +

1

7
+

(16− 9)2

56

= 6± 36.2 = [0; 42].

(using Table A5 with 5 d.f.). We rounded both ends of the prediction interval knowing that
there cannot be a negative or fractional number of requests. ♦

Prediction bands

For all possible values of a predictor x∗, we can prepare a graph of (1 − α) prediction
bands given by (11.10). Then, for each value of x∗, one can draw a vertical line and obtain
a 100(1− α)% prediction interval between these bands.

Figure 11.5 shows the 95% prediction bands for the number of processed requests in Exam-
ple 11.7. These are two curves on each side of the fitted regression line. As we have already
noticed, prediction is most accurate when x∗ is near the sample mean x̄. Prediction intervals
get wider when we move away from x̄.
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11.3 Multivariate regression

In the previous two sections, we learned how to predict a response variable Y from a
predictor variable X . We hoped in several examples that including more information and
using multiple predictors instead of one will enhance our prediction.

Now we introduce multiple linear regression that will connect a response Y with several
predictors X(1), X(2), . . ., X(k).

11.3.1 Introduction and examples

Example 11.8 (Additional information). In Example 11.2, we discussed predicting
price of a house based on its area. We decided that perhaps this prediction is not very
accurate due to a high variability among house prices.

What is the source of this variability? Why are houses of the same size priced differently?

Certainly, area is not the only important parameter of a house. Prices are different due to
different design, location, number of rooms and bathrooms, presence of a basement, a garage,
a swimming pool, different size of a backyard, etc. When we take all this information into
account, we’ll have a rather accurate description of a house and hopefully, a rather accurate
prediction of its price. ♦

Example 11.9 (U.S. population and nonlinear terms). One can often reduce vari-
ability around the trend and do more accurate analysis by adding nonlinear terms into the
regression model. In Example 11.3, we predicted the world population for years 2015–2020
based on the linear model

E(population) = β0 + β1(year).

We showed in Example 11.4 that this model has a pretty good fit.

However, a linear model does a poor prediction of the U.S. population between 1790 and
2010 (see Figure 11.6a). The population growth over a longer period of time is clearly
nonlinear.

On the other hand, a quadratic model in Figure 11.6b gives an amazingly excellent fit! It
seems to account for everything except a temporary decrease in the rate of growth during
the World War II (1939–1945).

For this model, we assume

E(population) = β0 + β1(year) + β2(year)
2
,

or in a more convenient but equivalent form,

E(population) = β0 + β1(year-1800)+ β2(year-1800)
2
.

♦
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(a) Linear model (b) Quadratic model

FIGURE 11.6: U.S. population in 1790–2010 (million people).

A multivariate linear regression model assumes that the conditional expectation of a
response

E
{
Y | X(1) = x(1), . . . , X(k) = x(k)

}
= β0 + β1x

(1) + . . .+ βkx
(k) (11.11)

is a linear function of predictors x(1), . . . , x(k).

This regression model has one intercept and a total of k slopes, and therefore, it defines a
k-dimensional regression plane in a (k + 1)-dimensional space of (X(1), . . . , X(k), Y ).

The intercept β0 is the expected response when all predictors equal zero.

Each regression slope βj is the expected change of the response Y when the corresponding
predictor X(j) changes by 1 while all the other predictors remain constant.

In order to estimate all the parameters of model (11.11), we collect a sample of nmultivariate
observations 




X1 =
(
X

(1)
1 , X

(2)
1 , . . . , X

(k)
1

)

X2 =
(
X

(1)
2 , X

(2)
2 , . . . , X

(k)
2

)

...
...

...

Xn =
(
X

(1)
n , X

(2)
n , . . . , X

(k)
n

)
.

Essentially, we collect a sample of n units (say, houses) and measure all k predictors on
each unit (area, number of rooms, etc.). Also, we measure responses, Y1, . . . , Yn. We then
estimate β0, β1, . . . , βk by the method of least squares, generalizing it from the univariate
case of Section 11.1 to multivariate regression.

11.3.2 Matrix approach and least squares estimation

According to the method of least squares, we find such slopes β1, . . . , βk and such an inter-
cept β0 that will minimize the sum of squared “errors”

Q =
n∑

i=1

(yi − ŷi)
2 =

n∑

i=1

(
yi − β0 − β1 x

(1)
i − . . .− βk x

(k)
i

)2
.
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Minimizing Q, we can again take partial derivatives of Q with respect to all the unknown
parameters and solve the resulting system of equations. It can be conveniently written in a
matrix form (which requires basic knowledge of linear algebra; if needed, refer to Appendix,
Section 12.4).

Matrix approach to multivariate linear regression

We start with the data. Observed are an n×1 response vector Y and an n×(k+1) predictor
matrix X,

Y =




Y1

...
Yn


 and X =




1 X1

...
...

1 Xn


 =




1 X
(1)
1 · · · X

(k)
1

...
...

...
...

1 X
(1)
n · · · X

(k)
n


 .

It is convenient to augment the predictor matrix with a column of 1’s because now the
multivariate regression model (11.11) can be written as

E




Y1

...
Yn


 =




1 X
(1)
1 · · · X

(k)
1

...
...

...
...

1 X
(1)
n · · · X

(k)
n







β0

β1

...
βk


 ,

or simply
E(Y ) = Xβ.

Now the multidimensional parameter

β =




β0

β1

...
βk


 ∈ Rk+1

includes the intercept and all the slopes. In fact, the intercept β0 can also be treated as one
of the slopes that corresponds to the added column of 1’s.

Our goal is to estimate β with a vector of sample regression slopes

b =




b0
b1
...
bk


 .

Fitted values will then be computed as

ŷ =




ŷ1
...
ŷn


 = Xb.

Thus, the least squares problem reduces to minimizing

Q(b) =

n∑

i=1

(yi − ŷi)
2 = (y − ŷ)T (y − ŷ)

= (y −Xb)T (y −Xb). (11.12)
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with T denoting a transposed vector.

Least squares estimates

In the matrix form, the minimum of the sum of squares

Q(b) = (y −Xb)T (y −Xb) = bT (XTX)b− 2yTXb+ yTy

is attained by

Estimated slopes
in multivariate regression

b = (XTX)−1XTy

As we can see from this formula, all the estimated slopes are

– linear functions of observed responses (y1, . . . , yn),

– unbiased for the regression slopes because

E(b) = (XTX)−1XT E(y) = (XTX)−1XTXβ = β,

– Normal if the response variable Y is Normal.

This is a multivariate analogue of b = Sxy/Sxx that we derived for the univariate case.

11.3.3 Analysis of variance, tests, and prediction

We can again partition the total sum of squares measuring the total variation of responses
into the regression sum of squares and the error sum of squares.

The total sum of squares is still

SSTOT =

n∑

i=1

(yi − ȳ)2 = (y − ȳ)T (y − ȳ),

with dfTOT = (n− 1) degrees of freedom, where

ȳ =




ȳ
...
ȳ


 = ȳ




1
...
1


 .

Again, SSTOT = SSREG + SSERR, where

SSREG =

n∑

i=1

(ŷi − ȳ)2 = (ŷ − ȳ)T (ŷ − ȳ)

is the regression sum of squares, and

SSERR =
n∑

i=1

(yi − ŷi)
2 = (y − ŷ)T (y − ŷ) = eTe
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is the error sum of squares, the quantity that we minimized when we applied the method
of least squares.

The multivariate regression model (11.11) defines a k-dimensional regression plane where
the fitted values belong to. Therefore, the regression sum of squares has

dfREG = k

degrees of freedom, whereas by subtraction,

dfERR = dfTOT − dfREG = n− k − 1

degrees of freedom are left for SSERR. This is again the sample size n minus k estimated
slopes and 1 estimated intercept.

We can then write the ANOVA table,

Multivariate
ANOVA

Source
Sum of
squares

Degrees of
freedom

Mean
squares

F

Model
SSREG

= (ŷ − ȳ)T (ŷ − ȳ)
k

MSREG

=
SSREG

k

MSREG

MSERR

Error
SSERR

= (y − ŷ)T (y − ŷ)
n− k − 1

MSERR

=
SSERR

n− k − 1

Total
SSTOT

= (y − ȳ)T (y − ȳ)
n− 1

The coefficient of determination

R2 =
SSREG

SSTOT

again measures the proportion of the total variation explained by regression. When we add
new predictors to our model, we explain additional portions of SSTOT; therefore, R

2 can
only can only go up. Thus, we should expect to increase R2 and generally, get a better fit
by going from univariate to multivariate regression.

Testing significance of the entire model

Further inference requires standard multivariate regression assumptions of Yi being
independent Normal random variables with means

E(Yi) = β0 + β1X
(1)
i + . . .+ βkX

(k)
i
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and constant variance σ2 while all predictors X
(j)
i are non-random.

ANOVA F-test in multivariate regression tests significance of the entire model. The model
is significant as long as at least one slope is not zero. Thus, we are testing

H0 : β1 = . . . = βk = 0 vs HA : not H0; at least one βj 6= 0.

We compute the F-statistic

F =
MSREG

MSERR
=

SSREG/k

SSERR/(n− k − 1)

and check it against the F-distribution with k and (n− k − 1) degrees of freedom in Table
A7.

This is always a one-sided right-tail test. Only large values of F correspond to large SSREG

indicating that fitted values ŷi are far from the overall mean ȳ, and therefore, the expected
response really changes along the regression plane according to predictors.

Variance estimator

Regression variance σ2 = Var(Y ) is then estimated by the mean squared error

s2 = MSERR =
SSERR

n− k − 1
.

It is an unbiased estimator of σ2 that can be used in further inference.

Testing individual slopes

For the inference about individual regression slopes βj , we compute all the variances
Var(βj). Matrix

VAR(b) =




Var(b1) Cov(b1, b2) · · · Cov(b1, bk)
Cov(b2, b1) Var(b2) · · · Cov(b2, bk)

...
...

...
...

Cov(bk, b1) Cov(bk, b2) · · · Var(bk)




is called a variance-covariance matrix of a vector b. It equals

VAR(b) = VAR
(
(XTX)−1XTy

)

= (XTX)−1XT VAR(y)X(XTX)−1

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1.

Diagonal elements of this k × k matrix are variances of individual regression slopes,

σ2(b1) = σ2(XTX)−1
11 , . . . , σ2(bk) = σ2(XTX)−1

kk .



Regression 387

We estimate them by sample variances,

s2(b1) = s2(XTX)−1
11 , . . . , s2(bk) = s2(XTX)−1

kk .

Now we are ready for the inference about individual slopes. Hypothesis

H0 : βj = B

can be tested with a T-statistic

t =
bj −B

s(bj)
.

Compare this T-statistic against the T-distribution with dfERR = n − k − 1 degrees of
freedom, Table A5. This test may be two-sided or one-sided, depending on the alternative.

A test of
H0 : βj = 0 vs HA : βj 6= 0

shows whether predictor X(j) is relevant for the prediction of Y . If the alternative is true,
the expected response

E(Y ) = β0 + β1X
(1) + . . .+ βjX

(j) + . . .+ βkX
(k)

changes depending on X(j) even if all the other predictors remain constant.

Prediction

For the given vector of predictors X∗ = (X
(1)
∗ = x

(1)
∗ , . . . , X

(k)
∗ = x

(k)
∗ ), we estimate the

expected response by
ŷ∗ = Ê {Y | X∗ = x∗} = x∗b

and predict the individual response by the same statistic.

To produce confidence and prediction intervals, we compute the variance,

Var(ŷ∗) = Var(x∗b) = xT
∗ Var(b)x∗ = σ2xT

∗ (X
TX)−1x∗,

where X is the matrix of predictors used to estimate the regression slope β.

Estimating σ2 by s2, we obtain a (1− α)100% confidence interval for µ∗ = E(Y ).

(1 − α)100% confidence
interval for the mean
µ∗ = E(Y | X∗ = x∗)

of all responses with X∗ = x∗

x∗b± tα/2 s

√
xT
∗ (X

TX)−1x∗

Accounting for the additional variation of the individual response y∗, we get a (1−α)100%
prediction interval for y∗.
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(1− α)100% prediction
interval for

the individual response Y
when X∗ = x∗

x∗b± tα/2 s

√
1 + xT

∗ (X
TX)−1x∗

In both expressions, tα/2 refers to the T-distribution with (n− k − 1) degrees of freedom.

Example 11.10 (Database structure). The computer manager in Examples 11.6 and
11.7 tries to improve the model by adding another predictor. She decides that in addition
to the size of data sets, efficiency of the program may depend on the database structure. In
particular, it may be important to know how many tables were used to arrange each data
set. Putting all this information together, we have

Data size (gigabytes), x1 6 7 7 8 10 10 15
Number of tables, x2 4 20 20 10 10 2 1

Processed requests, y 40 55 50 41 17 26 16

(a) Least squares estimation. The predictor matrix and the response vector are

X =




1 6 4
1 7 20
1 7 20
1 8 10
1 10 10
1 10 2
1 15 1




, Y =




40
55
50
41
17
26
16




.

We then compute

XTX =




7 63 67
63 623 519
67 519 1021


 and XTY =




245
1973
2908


 ,

to obtain the estimated vector of slopes

b = (XTX)−1(XTY ) =




52.7
−2.87
0.85


 .

Thus, the regression equation is

y = 52.7− 2.87x1 + 0.85x2,

or (
number of
requests

)
= 52.7− 2.87

(
size of
data

)
+ 0.85

(
number of
tables

)
.
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(b) ANOVA and F-test. The total sum of squares is still SSTOT = Syy = 1452. It is
the same for all the models with this response.

Having figured a vector of fitted values

ŷ = Xb =




38.9
49.6
49.6
38.2
32.5
25.7
10.5




,

we can immediately compute

SSREG = (ŷ − ȳ)T (ŷ − ȳ) = 1143.3 and SSERR = (y − ŷ)T (y − ŷ) = 308.7.

The ANOVA table is then completed as

Source Sum of
squares

Degrees of
freedom

Mean
squares

F

Model 1143.3 2 571.7 7.41
Error 308.7 4 77.2
Total 1452 6

Notice 2 degrees of freedom for the model because we now use two predictor variables.

R-square is now R2 = SSREG/SSTOT = 0.787, which is 12.5% higher than in Ex-
ample 11.6. These additional 12.5% of the total variation are explained by the new
predictor x2 that is used in the model in addition to x1. R-square can only increase
when new variables are added.

ANOVA F-test statistic of 7.41 with 2 and 4 d.f. shows that the model is significant
at the level of 0.05 but not at the level of 0.025.

Regression variance σ2 is estimated by s2 = 77.2.

(c) Inference about the new slope. Is the new predictor variable x2 significant? It is,
as long as the corresponding slope β2 is proved to be non-zero. Let us test H0 : β2 = 0.

The vector of slopes b has an estimated variance-covariance matrix

V̂AR(b) = s2(X ′X)−1 =




284.7 −22.9 −7.02
−22.9 2.06 0.46
−7.02 0.46 0.30


 .

From this, s(b2) =
√
0.30 = 0.55. The T-statistic is then

t =
b2

s(b2)
=

0.85

0.55
= 1.54,

and for a two-sided test this is not significant at any level up to 0.10. This suggests that
adding the data structure into the model does not bring a significant improvement.

♦
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11.4 Model building

Multivariate regression opens an almost unlimited opportunity for us to improve prediction
by adding more and more X-variables into our model. On the other hand, we saw in Sec-
tion 11.1.5 that overfitting a model leads to a low prediction power. Moreover, it will often
result in large variances σ2(bj) and therefore, unstable regression estimates.

Then, how can we build a model with the right, optimal set of predictors X(j) that will give
us a good, accurate fit?

Two methods of variable selection are introduced here. One is based on the adjusted R-
square criterion, the other is derived from the extra sum of squares principle.

11.4.1 Adjusted R-square

It is shown mathematically that R2, the coefficient of determination, can only increase when
we add predictors to the regression model. No matter how irrelevant it is for the response
Y , any new predictor can only increase the proportion of explained variation.

Therefore, R2 is not a fair criterion when we compare models with different numbers of
predictors (k). Including irrelevant predictors should be penalized whereas R2 can only
reward for this.

A fair measure of goodness-of-fit is the adjusted R-square.

DEFINITION 11.5

Adjusted R-square

R2
adj = 1− SSERR/(n− k − 1)

SSTOT/(n− 1)
= 1− SSERR/dfERR

SSTOT/dfTOT

is a criterion of variable selection. It rewards for adding a predictor only if it
considerably reduces the error sum of squares.

Comparing with

R2 =
SSREG

SSTOT
=

SSTOT − SSERR

SSTOT
= 1− SSERR

SSTOT
,

adjusted R-square includes degrees of freedom into this formula. This adjustment may result
in a penalty when a useless X-variable is added to the regression mode.

Indeed, imagine adding a non-significant predictor. The number of estimated slopes k in-
crements by 1. However, if this variable is not able to explain any variation of the response,
the sums of squares, SSREG and SSERR, will remain the same. Then, SSERR/(n− k − 1)
will increase and R2

adj will decrease, penalizing us for including such a poor predictor.

Adjusted R-square criterion: choose a model with the highest adjusted R-square.
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11.4.2 Extra sum of squares, partial F-tests, and variable selection

Suppose we have K predictors available for predicting a response. Technically, to select a
subset that maximizes adjusted R-square, we need to fit all 2K models and choose the one
with the highest R2

adj. This is possible for rather moderate K, and such schemes are built

in some statistical software.

Fitting all models is not feasible when the total number of predictors is large. Instead, we
consider a sequential scheme that will follow a reasonable path through possible regression
models and consider only a few of them. At every step, it will compare some set of predictors

X(Full) =
(
X(1), . . . , X(k), X(k+1), . . . , X(m)

)

and the corresponding full model

E(Y | X = x) = β0 + β1x
(1) + . . .+ βkx

(k) + βk+1x
(k+1) + . . .+ βmx(m)

with a subset
X(Reduced) =

(
X(1), . . . , X(k)

)

and the corresponding reduced model

E(Y | X = x) = β0 + β1x
(1) + . . .+ βkx

(k).

If the full model is significantly better, expanding the set of predictors is justified. If it is
just as good as the reduced model, we should keep the smaller number of predictors in order
to attain lower variances of the estimated regression slopes, more accurate predictions, and
a lower adjusted R-square.

DEFINITION 11.6

A model with a larger set of predictors is called a full model.

Including only a subset of predictors, we obtain a reduced model.

The difference in the variation explained by the two models is the extra sum
of squares,

SSEX = SSREG(Full)− SSREG(Reduced)

= SSERR(Reduced)− SSERR(Full).

Extra sum of squares measures the additional amount of variation explained by additional
predictors X(k+1), . . . , X(m). By subtraction, it has

dfEX = dfREG(Full)− dfREG(Reduced) = m− k

degrees of freedom.

Significance of the additional explained variation (measured by SSEX) is tested by a partial
F-test statistic

F =
SSEX/dfEX

MSERR(Full)
=

SSERR(Reduced)− SSERR(Full)

SSERR(Full)

(
n−m− 1

m− k

)
.
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As a set, X(k+1), . . . , X(m) affect the response Y if at least one of the slopes βk+1, . . . , βm

is not zero in the full model. The partial F-test is a test of

H0 : βk+1 = . . . = βm = 0 vs HA : not H0.

If the null hypothesis is true, the partial F-statistic has the F-distribution with

dfEX = m− k and dfERR(Full) = n−m− 1

degrees of freedom, Table A7.

The partial F-test is used for sequential selection of predictors in multivariate regression.
Let us look at two algorithms that are based on the partial F-test: stepwise selection and
backward elimination.

Stepwise (forward) selection

The stepwise selection algorithm starts with the simplest model that excludes all the
predictors,

G(x) = β0.

Then, predictors enter the model sequentially, one by one. Every new predictor should make
the most significant contribution, among all the predictors that have not been included yet.

According to this rule, the first predictor X(s) to enter the model is the one that has the
most significant univariate ANOVA F-statistic

F1 =
MSREG(X

(s))

MSERR(X(s))
.

All F-tests considered at this step refer to the same F-distribution with 1 and (n − 2) d.f.
Therefore, the largest F-statistic implies the lowest P-value and the most significant slope
βs

The model is now
G(x) = β0 + βsx

(s).

The next predictor X(t) to be selected is the one that makes the most significant contri-
bution, in addition to X(s). Among all the remaining predictors, it should maximize the
partial F-statistic

F2 =
SSERR(Reduced)− SSERR(Full)

MSERR(Full)

designed to test significance of the slope βt when the first predictor X(s) is already included.
At this step, we compare the “full model” G(x) = β0 +βsx

(s) +βtx
(t) against the “reduced

model” G(x) = β0 + βsx
(s). Such a partial F-statistic is also called F-to-enter.

All F-statistics at this step are compared against the same F-distribution with 1 and (n−3)
d.f., and again, the largest F-statistic points to the most significant slope βt.

If the second predictor is included, the model becomes

G(x) = β0 + βsx
(s) + βtx

(t).

The algorithm continues until the F-to-enter statistic is not significant for all the remaining
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predictors, according to a pre-selected significance level α. The final model will have all
predictors significant at this level.

Backward elimination

The backward elimination algorithm works in the direction opposite to stepwise selec-
tion.

It starts with the full model that contains all possible predictors,

G(x) = β0 + β1x
(1) + . . .+ βmx(m).

Predictors are removed from the model sequentially, one by one, starting with the least
significant predictor, until all the remaining predictors are statistically significant.

Significance is again determined by a partial F-test. In this scheme, it is calledF-to-remove.

The first predictor to be removed is the one that minimizes the F-to-remove statistic

F−1 =
SSERR(Reduced)− SSERR(Full)

MSERR(Full)
.

Again, the test with the lowest value of F−1 has the highest P-value indicating the least
significance.

Suppose the slope βu is found the least significant. Predictor X(u) is removed, and the
model becomes

G(x) = β0 + β1x
(1) + . . .+ βu−1x

(u−1) + βu+1x
(u+1) + . . .+ βmx(m).

Then we choose the next predictor to be removed by comparing all F−2 statistics, then
go to F−3, etc. The algorithm stops at the stage when all F-to-remove tests reject the
corresponding null hypotheses. It means that in the final resulting model, all the remaining
slopes are significant.

Both sequential model selection schemes, stepwise and backward elimination, involve fitting
at most K models. This requires much less computing power than the adjusted R2 method,
where all 2K models are considered.

Modern statistical computing packages (SAS, Splus, SPSS, JMP, and others) are equipped
with all three considered model selection procedures.

Example 11.11 (Program efficiency: choice of a model). How should we predict
the program efficiency in Examples 11.6, 11.7, and 11.10 after all? Should we use the size
of data sets x1 alone, or the data structure x2 alone, or both variables?

(a) Adjusted R-square criterion. For the full model,

R2
adj = 1− SSERR/dfERR

SSTOT/dfTOT
= 1− 308.7/4

1452/6
= 0.681.

Reduced model with only one predictor x1 (Example 11.6) has

R2
adj = 1− 491/5

1452/6
= 0.594,
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and another reduced model with only x2 has R2
adj = 0.490 (Exercise 11.9).

How do we interpret these R2
adj? The price paid for including both predictors x1 and

x2 is the division by 4 d.f. instead of 5 when we computed R2
adj for the full model.

Nevertheless, the full model explains such a large portion of the total variation that
fully compensates for this penalty and makes the full model preferred to reduced ones.
According to the adjusted R-square criterion, the full model is best.

(b) Partial F-test. How significant was addition of a new variable x2 into our model?
Comparing the full model in Example 11.10 with the reduced model in Example 11.6,
we find the extra sum of squares

SSEX = SSREG(Full)− SSREG(Reduced) = 1143− 961 = 182.

This is the additional amount of the total variation of response explained by x2 when
x1 is already in the model. It has 1 d.f. because we added only 1 variable. The partial
F-test statistic is

F =
SSEX/dfEX

MSERR(Full)
=

182/1

309
= 0.59.

From Table A7 with 1 and 4 d.f., we see that this F-statistic is not significant at the
0.25 level. It means that a relatively small additional variation of 182 that the second
predictor can explain does not justify its inclusion into the model.

(c) Sequential model selection. What models should be selected by stepwise and
backward elimination routines?

Stepwise model selection starts by including the first predictor x1. It is significant at
the 5% level, as we know from Example 11.6, hence we keep it in the model. Next,
we include x2. As we have just seen, it fails to result in a significant gain, F2 = 0.59,
and thus, we do not keep it in the model. The resulting model predicts the program
efficiency y based on the size of data sets x1 only.

Backward elimination scheme starts with the full model and looks for ways to reduce
it. Among the two reduced models, the model with x1 has a higher regression sum
of squares SSREG, hence the other variable x2 is the first one to be removed. The
remaining variable x1 is significant at the 5% level; therefore, we again arrive to the
reduced model predicting y based on x1.

Two different model selection criteria, adjusted R-square and partial F-tests, lead us
to two different models. Each of them is best in a different sense. Not a surprise. ♦

11.4.3 Categorical predictors and dummy variables

Careful model selection is one of the most important steps in practical statistics. In re-
gression, only a wisely chosen subset of predictors delivers accurate estimates and good
prediction.

At the same time, any useful information should be incorporated into our model. We con-
clude this chapter with a note on using categorical (that is, non-numerical) predictors in
regression modeling.
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Often a good portion of the variation of response Y can be explained by attributes rather
than numbers. Examples are

– computer manufacturer (Dell, IBM, Hewlett Packard, etc.);

– operating system (Unix, Windows, DOS, etc.);

– major (Statistics, Computer Science, Electrical Engineering, etc.);

– gender (female, male);

– color (white, blue, green, etc.).

Unlike numerical predictors, attributes have no particular order. For example, it is totally
wrong to code operating systems with numbers (1 = Unix, 2 = Windows, 3 = DOS), create
a new predictor X(k+1), and include it into the regression model

G(x) = β0 + β1x
(1) + . . .+ βkx

(k) + βk+1x
(k+1).

If we do so, it puts Windows right in the middle between Unix and DOS and tells that
changing an operating system from Unix to Windows has exactly the same effect on the
response Y as changing it from Windows to DOS!

However, performance of a computer really depends on the operating system, manufacturer,
type of the processor, and other categorical variables. How can we use them in our regression
model?

We need to create so-called dummy variables. A dummy variable is binary, taking values
0 or 1,

Z
(j)
i =

{
1 if unit i in the sample has category j
0 otherwise

For a categorical variable with C categories, we create (C − 1) dummy predictors,

Z(1), . . . ,Z(C−1). They carry the entire information about the attribute. Sampled items
from category C will be marked by all (C − 1) dummies equal to 0.

Example 11.12 (Dummy variables for the operating system). In addition to nu-
merical variables, we would like to include the operating system into the regression model.
Suppose that each sampled computer has one of three operating systems: Unix, Windows,
or DOS. In order to use this information for the regression modeling and more accurate
forecasting, we create two dummy variables,

Z
(1)
i =

{
1 if computer i has Unix
0 otherwise

Z
(2)
i =

{
1 if computer i has Windows
0 otherwise

Together with numerical predictors X(1), . . . ,X(k), the regression model will be

G(x, z) = β0 + β1x
(1) + . . .+ βkx

(k) + γ1z
(1) + γ2z

(2).

♦

Fitting the model, all dummy variables are included into the predictor matrixX as columns.
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Avoid singularity by creating only (C − 1) dummies

Notice that if we make a mistake and create C dummies for an attribute with C categories,
one dummy per category, this would cause a linear relation

Z(1) + . . .+Z(C) = 1.

A column of 1’s is already included into the predictor matrix X, and therefore, such a linear
relation will cause singularity of (XTX) when we compute the least squares estimates
b = (XTX)−1XTy. Thus, it is necessary and sufficient to have only (C − 1) dummy
variables.

Interpretation of slopes for dummy variables

Each slope γj for a dummy predictor Z(j) is the expected change in the response caused
by incrementing Z(j) by 1 while keeping all other predictors constant. Such an increment
occurs when we compare the last category C with category j.

Thus, the slope γj is the difference in the expected response comparing category C with
category j. The difference of two slopes (γj − γC) compares category j with category C.

To test significance of a categorical variable, we test all the corresponding slopes γj simul-
taneously. This is done by a partial F-test.

Matlab notes

MATLAB (MATrix LABoratory) is great for matrix computations, so all the regression
analysis can be done by writing the matrix formulas, b=inv(X’*X)*(X*Y) for the regression
slope, Yhat=X*b for the fitted values, e=Y-Yhat for residuals, etc., given a vector of responses
Y and a matrix of predictors X . For more instructions on that, see the last paragraph of
Section 12.4.

Also, MATLAB’s Statistics Toolbox has special tools for regression. The gen-
eral command regress(Y,X) returns a sample regression slope with a response
Y and predictor X . Notice that if you’d like to fit regression with an inter-
cept, then the vector of ones has to be included into matrix X . For example,

−30 −20 −10 0 10 20 30

X1

X2

X3

Coefficients with Error Bars      Coeff.   t−stat    p−val

           0   0.0000   1.0000

    −4.14286  −3.1290   0.0260

     0.84741   1.5366   0.1992

1 2
5

10

15

20
Model History

R
M
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E

FIGURE 11.7: Stepwise variable selection
to model program efficiency, Example 11.11.

X0 = ones(size(Y));

regress(Y,[X0,X1,X2]);

will create a vector of ones of the same size
as the vector of responses and use it to fit a
regression model Y = β0+β1X1+β2X2+ε.
To get (1−α)100% confidence intervals for
all the regression slopes, write [b bint] =

regress(Y,[X0,X1,X2],alpha).

Many components of the regression anal-
ysis are available by the command
regstats(Y,X). A list of options appears
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where you can mark which statistics you’d like to obtain – mean squared error s2, ANOVA
F-statistic, R2, R2

adj, etc.

You can also use stepwise(X,Y) to select variables for the multivariate regression. A window
opens such as on Figure 11.7, and the stepwise variable selection algorithm runs, reporting
the vital regression statistics at each step.

Summary and conclusions

This chapter provides methods of estimating mathematical relations between one or several
predictor variables and a response variable. Results are used to explain behavior of the
response and to predict its value for any new set of predictors.

Method of least squares is used to estimate regression parameters. Coefficient of determi-
nation R2 shows the portion of the total variation that the included predictors can explain.
The unexplained portion is considered as “error.”

Analysis of variance (ANOVA) partitions the total variation into explained and unexplained
parts and estimates regression variance by the mean squared error. This allows further
statistical inference, testing slopes, constructing confidence intervals for mean responses
and prediction intervals for individual responses. ANOVA F-test is used to test significance
of the entire model.

For accurate estimation and efficient prediction, it is important to select the right subset
of predictors. Sequential model selection algorithms are based on partial F-tests comparing
full and reduced models at each step.

Categorical predictors are included into regression modeling by creating dummy variables.

Exercises

Suppose that the standard regression assumptions, univariate or multivariate, hold in Ex-
ercises 11.2, 11.3, 11.4, 11.5, 11.9, 11.14, and 11.15.

11.1. The time it takes to transmit a file always depends on the file size. Suppose you transmitted
30 files, with the average size of 126 Kbytes and the standard deviation of 35 Kbytes. The
average transmittance time was 0.04 seconds with the standard deviation of 0.01 seconds.
The correlation coefficient between the time and the size was 0.86.

Based on this data, fit a linear regression model and predict the time it will take to transmit
a 400 Kbyte file.

11.2. The following statistics were obtained from a sample of size n = 75:
– the predictor variable X has mean 32.2, variance 6.4;


