

FIGURE 12.2: Integrals are areas under the graph of $f(x)$.

12.4 Matrices and linear systems

A matrix is a rectangular chart with numbers written in rows and columns,

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 c} \\
A_{21} & A_{22} & \cdots & A_{2 c} \\
\cdots & \cdots & \cdots & \cdots \\
A_{r 1} & A_{r 2} & \cdots & A_{r c}
\end{array}\right)
$$

where r is the number of rows and c is the number of columns. Every element of matrix A is denoted by $A_{i j}$, where $i \in[1, r]$ is the row number and $j \in[1, c]$ is the column number. It is referred to as an " $r \times c$ matrix."

Multiplying a row by a column

A row can only be multiplied by a column of the same length. The product of a row A and a column B is a number computed as

$$
\left(A_{1}, \ldots, A_{n}\right)\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right)=\sum_{i=1}^{n} A_{i} B_{i}
$$

Example 12.1 (Measurement conversion). To convert, say, 3 hours 25 minutes 45 seconds into seconds, one may use a formula

$$
\left(\begin{array}{lll}
3 & 25 & 45
\end{array}\right)\left(\begin{array}{c}
3600 \\
60 \\
1
\end{array}\right)=12345(\mathrm{sec})
$$

Multiplying matrices

Matrix A may be multiplied by matrix B only if the number of columns in A equals the number of rows in B.

If A is a $k \times m$ matrix and B is an $m \times n$ matrix, then their product $A B=C$ is a $k \times n$ matrix. Each element of C is computed as

$$
C_{i j}=\sum_{s=1}^{m} A_{i s} B_{s j}=\binom{i^{\text {th }} \text { row }}{\text { of } A}\binom{j^{\text {th }} \text { column }}{\text { of } B} .
$$

Each element of $A B$ is obtained as a product of the corresponding row of A and column of B.

Example 12.2. The following product of two matrices is computed as

$$
\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)\left(\begin{array}{rr}
9 & -3 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{ll}
(2)(9)+(6)(-3), & (2)(-3)+(6)(1) \\
(1)(9)+(3)(-3), & (1)(-3)+(3)(1)
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

In the last example, the result was a zero matrix "accidentally." This is not always the case. However, we can notice that matrices do not always obey the usual rules of arithmetics. In particular, a product of two non-zero matrices may equal a 0 matrix.

Also, in this regard, matrices do not commute, that is, $A B \neq B A$, in general.

Transposition

Transposition is reflecting the entire matrix about its main diagonal.

$$
\underline{\text { NOTATION }\left\|A^{T}=\operatorname{transposed~matrix~} A\right\|}
$$

Rows become columns, and columns become rows. That is,

$$
A_{i j}^{T}=A_{j i}
$$

For example,

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
7 & 8 & 9
\end{array}\right)^{T}=\left(\begin{array}{ll}
1 & 7 \\
2 & 8 \\
3 & 9
\end{array}\right)
$$

The transposed product of matrices is

$$
(A B)^{T}=B^{T} A^{T}
$$

Solving systems of equations

In Chapters 6 and 7, we often solve systems of n linear equations with n unknowns and find a steady-state distribution. There are several ways of doing so.
One method to solve such a system is by variable elimination. Express one variable in terms of the others from one equation, then substitute it into the unused equations. You will get a system of $(n-1)$ equations with $(n-1)$ unknowns. Proceeding in the same way, we reduce the number of unknowns until we end up with 1 equation and 1 unknown. We find this unknown, then go back and find all the other unknowns.

Example 12.3 (Linear system). Solve the system

$$
\left\{\begin{aligned}
2 x+2 y+5 z & =12 \\
3 y-z & =0 \\
4 x-7 y-z & =2
\end{aligned}\right.
$$

We don't have to start solving from the first equation. Start with the one that seems simple. From the second equation, we see that

$$
z=3 y
$$

Substituting (3y) for z in the other equations, we obtain

$$
\left\{\begin{array}{rlr}
2 x+17 y & = & 12 \\
4 x-10 y & = & 2
\end{array}\right.
$$

We are down by one equation and one unknown. Next, express x from the first equation,

$$
x=\frac{12-17 y}{2}=6-8.5 y
$$

and substitute into the last equation,

$$
4(6-8.5 y)-10 y=2
$$

Simplifying, we get $44 y=22$, hence $y=0.5$. Now, go back and recover the other variables,

$$
x=6-8.5 y=6-(8.5)(0.5)=1.75 ; \quad z=3 y=1.5
$$

The answer is $x=1.75, y=0.5, z=1.5$.
We can check the answer by substituting the result into the initial system,

We can also eliminate variables by multiplying entire equations by suitable coefficients, adding and subtracting them. Here is an illustration of that.

Example 12.4 (ANOTHER METHOD). Here is a shorter solution of Example 12.3. Double the first equation,

$$
4 x+4 y+10 z=24
$$

and subtract the third equation from it,

$$
11 y+11 z=22, \text { or } y+z=2
$$

This way, we eliminated x. Then, adding $(y+z=2)$ and $(3 y-z=0)$, we get $4 y=2$, and again, $y=0.5$. Other variables, x and z, can now be obtained from y, as in Example 12.3. \diamond

The system of equations in this example can be written in a matrix form as

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{rrr}
2 & 0 & 4 \\
2 & 3 & -7 \\
5 & -1 & -1
\end{array}\right)=\left(\begin{array}{rrr}
12 & 0 & 2
\end{array}\right)
$$

or, equivalently,

$$
\left(\begin{array}{rrr}
2 & 2 & 5 \\
0 & 3 & -1 \\
4 & -7 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
12 & 0 & 2
\end{array}\right)
$$

Inverse matrix

Matrix B is the inverse matrix of A if

$$
A B=B A=I=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

where I is the identity matrix. It has 1 s on the diagonal and 0 s elsewhere. Matrices A and B have to have the same number of rows and columns.

$$
\text { Notation } \| A^{-1}=\text { inverse of matrix } A \|
$$

Inverse of a product can be computed as

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

To find the inverse matrix A^{-1} by hand, write matrices A and I next to each other. Multiplying rows of A by constant coefficients, adding and interchanging them, convert matrix A to the identity matrix I. The same operations convert matrix I to A^{-1},

$$
(A \mid I) \longrightarrow\left(I \mid A^{-1}\right) .
$$

Example 12.5. Linear system in Example 12.3 is given by matrix

$$
A=\left(\begin{array}{rrr}
2 & 2 & 5 \\
0 & 3 & -1 \\
4 & -7 & -1
\end{array}\right)
$$

Repeating the row operations from this example, we can find the inverse matrix A^{-1},

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
2 & 2 & 5 & 1 & 0 & 0 \\
0 & 3 & -1 & 0 & 1 & 0 \\
4 & -7 & -1 & 0 & 0 & 1
\end{array}\right)
\end{aligned} \rightarrow\left(\begin{array}{ccc|ccc}
4 & 4 & 10 & 2 & 0 & 0 \\
0 & 3 & -1 & 0 & 1 & 0 \\
4 & -7 & -1 & 0 & 0 & 1
\end{array}\right)
$$

The inverse matrix is found,

$$
A^{-1}=\left(\begin{array}{ccc}
5 / 44 & 3 / 8 & 17 / 88 \\
1 / 22 & 1 / 4 & -1 / 44 \\
3 / 22 & -1 / 4 & -3 / 44
\end{array}\right)
$$

You can verify the result by multiplying $A^{-1} A$ or $A A^{-1}$.

For a 2×2 matrix, the formula for the inverse is

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Matrix operations in Matlab

```
A = [1 3 5; 8 3 0; 0 -3 -1]; % Entering a matrix
B = [ 3 9 8
        0 2 % Another way to define a matrix
        9 2 1];
A+B % Addition
A*B % Matrix multiplication
C=A.*B % Multiplying element by element,
% C Cij = A ij B B
```



```
A'
inv(A)}
A^(-1) }
eye(n) % n\timesn identity matrix
zeros(m,n)
ones(m,n)
rand(m,n) % matrix of Uniform(0,1) random numbers
randn(m,n) % matrix of Normal (0,1) random numbers
```

