Stat 427/627 (Statistical Machine Learning, Baron)

Notes on Jackknife

Jackknife is an effective resampling method that was proposed by Morris Quenouille to estimate
and reduce the bias of parameter estimates.

1.1 Jackknife resampling
Resampling refers to sampling from the original sample .S with certain weights. The original weights

are (1/n) for each units in the sample, and the original empirical distribution is

1 . .
. mass — at each observation x;, i € S
F= n
0 elsewhere

Resampling schemes assign different weights. Jackknife re-assigns weights as follows,

mass at each observation x;, i € S,1 # j

0 elsewhere, including z;

That is, Jackknife removes unit 7 from the sample, and the new jackknife sample is

S(]) = (xl, e ,xj_l,xj+1, e ,[lfn).

1.2 Jackknife estimator

Suppose we estimate parameter # with an estimator 0 = é(xl, ..., o). The bias of 0 is

A~ ~

Bias(6) = Eq(0) — 6.

A~

e How to estimate Bias(#)?

A~

e How to reduce |Bias(6)|?
e [f the bias is not zero, how to find an estimator with a smaller bias?

A~

For almost all reasonable and practical estimates, Bias(d) — 0, as n — oo. Then, it is reasonable
to assume a power series of the type

A aq (05} as
Ey0)=0+—+ =+ —=+...
00) =0+ —+ S+ 5+,

with some coefficients {ay}.



1.2.1 Delete one

Based on a Jackknife sample S(;), we compute the Jackknife version of the estimator,

~

9(” = é(S(j)) = é(flﬁl, ey L1 Ljg1y - - - ,Zl,’n),

whose expected value admits representation

A aq (05}
Eo(0;)) =0

1.2.2 Average

For the sake of a smaller variance, let us average all such estimates and define

This averaged estimator has the same expected value as each é(j),

A aq a9
Ey(0e) =0
) =0+ T e

1.2.3 Combine 0,y with 0

Now it is easy to combine the averaged Jackknife estimator é(.) with the original 0, to kill the main
term in the bias of §. Consider

By {nf - (n— i} = {n@—(n—1)9}+{a1—a1}+{%— @ }+

n—1
= 9+7n(n_1)+...
a2 _
= 9+E+O(n %). (1)

1.2.4 The Jackknife estimator
The Jackknife estimator of 6 is A A A

According to (1), its bias is of order O(n2) instead of O(n™'), and thus, we have achieved our
goal of bias reduction,

Bias(f,x) = % +0(n™%)

1.2.5 Estimation of the bias

In general, estimation of the bias is a tricky problem because we observed an estimator 0 only once,
we cannot compute the average of such estimators, and it is not clear how this average differs from
the true parameter §. Now we can use the Jackknife method to estimate the bias.



~ We know that 0 Jx 1s “almost” unbiased, therefore, the difference between the original estimator
0 and 0,k is a good estimator of Bias(6),

Bias(f) = 6 — 6, = (n — 1)(f(e) — 0).

1.2.6 Example - sample variance

As an example, consider an MLE version of the sample variance

n )2 n .2

A T;i— X €T

9221(2 ) — 1 Z—[i’2,
n n

which is the maximum likelihood estimator of the population variance # = 02 = VarX under the
Normal distribution.
This estimator is biased. As we know, the unbiased version of the sample variance is

Apply the Jackknife method to the biased estimator 0.
First, delete unit j and compute

7 _i#] =2
g = ——1 70
n n 2
Yatoat (Yoo
_ 1 N\
n—1 (n—1)2
n n 2 n
Zx?—x? (Zzl> +x?_2szxi
_ 1 _ 1 1
B n—1 (n—1)2
Then, average all é(j),
. 1.
O = —2.0u
1
Y-ty (o) +1vE-nlyeys
_ 1 n 1 T n 1
n—1 (n—1)2



Final step - obtain the Jackknife estimator
éJK = né — (n — 1)‘9(.)

- (pa- T (e L)y ()

n n(n —1 n(n —1
n—1 1 9 1 n—2 2
- (-5 ) 2 () (2
 Yai—nzt
= ==

The Jackknife method immediately converted the biased version of the sample variance into the
unbiased version! X
This was anticipated. Expected value of 6 is actually

- 6
Ey(0) =6 — —
o(0) =
with coefficients a; = —6 and a; = 0 for all j > 2. Jackknife removes the (a;/n) term of the power

series. Since there are no other terms in this case, Jackknife removed the entire bias.
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THE PRICE OF BIAS REDUCTION WHEN THERE ISNO  »
UNBIASED ESTIMATE

By HaNI Doss! AND JAYARAM SETHURAMAN?
Florida State University

Let ¢ be a parameter for which there is no unbiased estimator. This note
shows that for an arbitrary sequence of estimators T¥), if the biases of 7%
tend to O then their variances must tend to o.

1. Introduction. Let X = (X,,..., X,) have distribution P,;, where the
unknown parameter varies in ®. Suppcse that we need to estimate a real valued
function ¢(8) of the parameter. Let ¢: = ¢;(X ) be a biased estimator of ¢. There
exist several procedures for reducing the bias of ¢: jackknifing, bootstrapping
[see Efron (1982)] and other procedures based on expansions of Ea(é) [see Cox
and Hinkley (1974), Section 8.4]. These procedures may not eliminate the bias
completely, and one often hears the following suggestion. Let ¢ be obtained
from ¢ by one of these bias-reduction procedures. If ¢V is still biased, repeat the
bias-reduction procedure and obtain ¢?, ¢, etc., until a desired amount of
reduction in bias is obtained or the bias is removed completely. Such ‘““higher-
order bias corrections” are described for instance in the review paper of Miller
(1974) in connection with the jackknife. There are examples where no unbiased
estimator of ¢ exists but there exists a sequence of estimators ¢, ¢V, @, ...,
whose biases converge to 0 (see Section 2).

The purpose of this note is to show (Theorem 1) that when no unbiased
estimator of ¢ exists, then reducing the bias to 0 necessarily forces the variance
of the estimators to tend to oo. This theorem therefore gives qualitative support
to the widely held view that bias reduction is by itself not a desirable property,
but becomes desirable only if it can be demonstrated that it is accompanied by a
reduction in mean squared error.

2. Main result and remarks. Let (%, %) be a measurable space and
(P, 0 € ©) be a family of probability measures on (%, ). Let ¢ be a real
valued function defined on @. The bias of an estimator T = T(X) is defined by
Br(8) = E(T(X)) — ¢(8), assuming that E,(T(X)) exists.

THEOREM 1. Suppose that

Al. P, < P, forall 6, 6, in©,
A2. [(dFy /dPFy )" dP, < o forall 6,, 6, in ©
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and that {T,)3_, is a sequence of estimators for which

(1) Br(8) =0 forallfin®.
If there does not exist an unbiased estimator of ¢ then
(2) Vary(T,) > o ask — oo, forall § € 0.

PROOF. Suppose that (2) is not true. Then there exists a §, in ® and
a subsequence {k*} of {k} such that Var,(T}.) is bounded. Now, consider
the usual Hilbert space H, = LY %, %, P ) of all functions that are square-
integrable with respect to Fy. Notice that {T}.} is a norm-bounded set in Hy .
From the sequential weak-compactness of norm-bounded sets, there exists a T in
H, and a subsequence {k**} of {k*} such that T,.. » T weakly in H, along
the subsequence {£**}, i.e.,

T...fdP, —» |TfdP, for every function f in Hy .
k 6, 9, o

In particular, setting f = dFy/dF;, we get
Ey(T,..) » Eo(T),

along the subsequence {k**}, for all # in ©. From (1), it now follows that
Ey (T) = ¢(8), that is T' is unbiased for ¢, which contradicts one of our assump-
tions. Hence (2) holds and the proof is complete. O

There are many examples of situations to which this theorem applies. One
class can be obtained from the idea of the following example. Consider the family
of Poisson distributions with parameter A with A > 0. It is well known that there
exists no unbiased estimator of 1 /A and that all polynomials in A are unbiasedly
estimable. From (a slight modification of) the Stone-Weierstrass theorem, there
exists a sequence of polynomials in A which converge to 1/A for each A. Thus
there exists a sequence of estimators which are unbiased for these polynomials in
A and whose biases in estimating 1 /A converge to 0. A simple calculation shows
that [(dP, /dP,))* dPy, = exp(A, — 2\, + A2 /\,). Thus Theorem 1 applies to
this case and the variances of these estimators must tend to co.

It may appear that Theorem 1 does not apply to estimates based on the
jackknife, since the “delete-one” jackknife can be formed only a finite number of
times. However, a situation with an infinite sequence of estimators based on the
jackknife arises in the following example, based on an idea of Gaver and Hoel
(1970). Suppose that the data consists of a Poisson process { N(¢); ¢ € {0,1]} with
rate A. In connection with the biased maximum likelihood estimator ¢ = e AND
of e, Gaver and Hoel suggest splitting the interval [0, 1] into n nonoverlapping
intervals each of length 1/n, and letting N; be the number of events in the ith
interval. These are independent and identically distributed and one can therefore
form the delete-one jackknife as usual. This yields, for each n, an estimate ¢,
and they show that as n — oo, é;(n) converges to an estimate ¢‘" which depends
on the Poisson process only through the sufficient statistic N(1). This procedure
can be repeated indefinitely in principle, giving a sequence of estimators {¢©)%_,.
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