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Bootstrap is used to estimate population parameters by Monte Carlo simulations when it
is too difficult to do it analytically. When computers became powerful enough to handle
large-scale simulations, the bootstrap methods got very popular for their ability to evaluate
properties of various estimates.

Consider, for example, the standard errors. From the previous chapters, we know the stan-
dard errors of a sample mean and a sample proportion,

s(X) =
σ√
n

and s(p̂) =

√
p(1− p)

n
,

and they are quite simple. Well, try to derive standard errors of other statistics - sample
median, sample variance, sample interquartile range, and so on. Each of these will require
a substantial amount of work.

Many complicated estimates are being used nowadays in modern Statistics. How can one
evaluate their performance, estimate their standard error, bias, etc.?

The difficulty is that we observe an estimator θ̂ only once. That is, we have one sample
S = (X1, . . . , Xn) from the population P , and from this sample we compute θ̂. We would

very much like to observe many θ̂’s and then compute their sample variance, for example,
but we don’t have this luxury. From one sample, we observe only one θ̂, and this is just not
enough to compute its sample variance!

1.0.1 Bootstrap distribution and all bootstrap samples

In 1970s, an American mathematician Bradley Efron, Professor at Stanford University,
proposed a rather simple approach. He called it bootstrap referring to the idiom “to pull

oneself up by one’s bootstraps”, which means to find a solution relying on your own sources
and without any help from outside (a classical example is Baron Münchausen from the
18th century collection of tales by R. E. Raspe, who avoided drowning in a lake by pulling
himself from the water by his own hair!). In our situation, even though we really need several

samples to explore the properties of an estimator θ̂, we’ll manage to do it with what we
have, which is just one sample.

For the invention of bootstrap, Professor Efron is awarded the 2019 International Prize in
Statistics which is said to be an equivalent of the Nobel Prize in Statistics.

To start, let’s notice that many commonly used statistics are constructed in the same way as
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FIGURE 1.1: Parameter θ and its estimator θ̂ computed by the same mechanism g applied

to the population and to the sample.

the corresponding population parameters. We are used to estimating a population mean µ
by a sample meanX , a population variance σ2 by a sample variance s2, population quantiles
qp by sample quantiles q̂p, and so on. To estimate a certain parameter θ, we collect a random

sample S from P and essentially compute the estimator θ̂ from this sample by the same
mechanism as θ was computed from the whole population!

In other words, there is a function g that one can use to compute a parameter θ from the
population P (Figure 1.1). Then

θ = g(P) and θ̂ = g(S).

Example 1.1 (Population mean and sample mean). Imagine a strange calculator
that can only do one operation g – averaging. Give it 4 and 6, and it returns their average
g(4, 6) = 5. Give it 3, 7, and 8, and it returns g(3, 7, 8) = 6.

Give it the whole population P , and it returns the parameter θ = g(P) = µ. Give it a

sample S = (X1, . . . , Xn), and it returns the estimator θ̂ = g(X1, . . . , Xn) = X. ♦

You can imagine similar calculators for the variances, medians, and other parameters and
their estimates. Essentially, each estimator θ̂ is a mechanism that copies the way a parameter
θ is obtained from the population and then applies it to the sample.

Bradley Efron proposed one further step. Suppose some estimator is difficult to figure out.
For example, we are interested in the variance of a sample median, η = Var(M̂) = h(P).
This mechanism h consists of taking all possible samples from the population, taking their
sample medians M̂ , and then calculating their variance,

η = h(P) = E(M̂ − EM̂)2.

Of course, we typically cannot observe all possible samples; that’s why we cannot compute
h(P), and parameter η is unknown. How can we estimate it based on just one sample S?
Efron’s bootstrap approach is to apply the same mechanism to the sample S. That is,
take all possible samples from S, compute their medians, and then compute the sample
variance of those, as on Figure 1.2. It may sound strange, but yes, we are proposing to
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Bootstrap estimator

η̂∗ = Var(θ̂∗)

FIGURE 1.2: Bootstrap procedure estimates η = Var(θ̂) by the variance of θ̂∗i ’s, obtained
from bootstrap samples.

create more samples from one sample S given to us. After all, exactly the same algorithm
was used to compute η = h(P). The advantage is that we know the observed sample S, and
therefore, we can perform all the bootstrap steps and estimate η.

Sampling from the observed sample S is a statistical technique called resampling. Bootstrap
is one of the resampling methods. The obtained samples from S are called bootstrap samples.
Each bootstrap sample Bj = (X∗

1j , . . . , X
∗

nj) consists of values X∗

ij sampled from S =
(X1, . . . , Xn) independently and with equal probabilities. That is,

X∗

ij =





X1 with probability 1/n
X2 with probability 1/n
· · · · · · · · · · · · · · ·
Xn with probability 1/n

This is sampling with replacement, which means that the same observation Xi can be
sampled more than once. An asterisk (∗) is used to denote the contents of bootstrap samples.

DEFINITION 1.1

A bootstrap sample is a random sample drawn with replacement from the
observed sample S of the same size as S.
The distribution of a statistic across bootstrap samples is called a bootstrap
distribution.

An estimator that is computed on basis of bootstrap samples is a bootstrap
estimator.

Example 1.2 (Variance of a sample median). Suppose that we observed a small
sample S = (2, 5, 7) and estimated the population median M with the sample median
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i Bi M̂i

1 (2, 2, 2) 2
2 (2, 2, 5) 2
3 (2, 2, 7) 2
4 (2, 5, 2) 2
5 (2, 5, 5) 5
6 (2, 5, 7) 5
7 (2, 7, 2) 2
8 (2, 7, 5) 5
9 (2, 7, 7) 7

i Bi M̂i

10 (5, 2, 2) 2
11 (5, 2, 5) 5
12 (5, 2, 7) 5
13 (5, 5, 2) 5
14 (5, 5, 5) 5
15 (5, 5, 7) 5
16 (5, 7, 2) 5
17 (5, 7, 5) 5
18 (5, 7, 7) 7

i Bi M̂i

19 (7, 2, 2) 2
20 (7, 2, 5) 5
21 (7, 2, 7) 7
22 (7, 5, 2) 5
23 (7, 5, 5) 5
24 (7, 5, 7) 7
25 (7, 7, 2) 7
26 (7, 7, 5) 7
27 (7, 7, 7) 7

TABLE 1.1: All bootstrap samples Bi drawn from S and the corresponding sample medians

for Example 1.2.

M̂ = 5. How can we estimate its variance Var(M̂)?

Solution. Table 1.1 lists all 33 = 27 equally likely bootstrap samples that can be drawn

from S. Among these, 7 samples have M̂∗

i = 2, 13 samples have M̂∗

i = 5, and 7 samples

have M̂∗

i = 7. So, the bootstrap distribution of a sample median is

P ∗(2) = 7/27, P ∗(5) = 13/27, P ∗(7) = 7/27. (1.1)

We use it to estimate h(P) = Var(M̂) with the bootstrap estimator

V̂ar
∗

(M̂) = h(S) =
∑

x

x2P ∗(x) −
(∑

x

xP ∗(x)

)2

= (4)

(
7

27

)
+ (25)

(
13

27

)
+ (49)

(
7

27

)
−
{
(2)

(
7

27

)
+ (5)

(
13

27

)
+ (7)

(
7

27

)}2

= 3.303. ♦

Here is a summary of the bootstrap method that we applied in this example.

Bootstrap
(all bootstrap

samples)

To estimate parameter η of the distribution of θ̂ :
1. Consider all possible bootstrap samples drawn with
replacement from the given sample S as well as

statistics θ̂∗ computed from them.

2. Derive the bootstrap distribution of θ̂∗.
3. Compute the parameter of this bootstrap distribution
that has the same meaning as η.

All right, one may say, this certainly works for a “toy” sample of size three. But how about
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bigger samples? We can list all nn possible bootstrap samples for very small n. However,
a rather modest sample of size n = 60 can produce 6060 ≈ 4.9 · 10106 different bootstrap
samples, which is almost five million times larger than the googol!

Certainly, we are not going to list a googol of bootstrap samples. Instead, we’ll discuss
two alternative approaches. The first one proposes to compute the bootstrap distribution
without listing all the bootstrap samples. This, however, is still feasible only in relatively
simple situations. The second solution, by far the most popular one, uses Monte Carlo
simulations to produce a large number b of bootstrap samples. Although this way we may
not get all possible bootstrap samples, results will be very close for large b.

Bootstrap distribution

The only reason for considering all possible bootstrap samples in Example 1.2 was to find
the distribution (1.1) and then to obtain the bootstrap estimator η̂∗ = V̂ar(M̂∗) from it.

Sometimes it is possible to compute the bootstrap distribution without listing all bootstrap
samples. Here is an example.

Example 1.3 (Bias of a sample median). A sample median may be biased or unbiased
for estimating the population median. It depends on the underlying distribution of data.
Suppose we observed a sample

S = (3, 5, 8, 5, 5, 8, 5, 4, 2).

Find a bootstrap estimator of η = Bias(M̂), the bias of the sample median.

Solution. First, find the bootstrap distribution of a sample median M̂∗. Based on the given
sample of size n = 9, the sample median of bootstrap samples can be equal to 2, 3, 4, 5, or
8. Let us compute the probability of each value.

Sampling from S, values X∗

ij = 2, 3, and 4 appear with probability 1/9 because only one of
each of them appears in the given sample. Next, X∗

ij = 5 with probability 4/9, and X∗

ij = 8
with probability 2/9.

Now, the sample median M̂∗

i in any bootstrap sample Bi is the central or the 5th smallest
observation. Thus, it equals 2 if at least 5 of 9 values in Bi equal 2. The probability of that
is

P ∗(2) = P (Y ≥ 5) =

9∑

y=5

( 9
y

) (1

9

)y (
8

9

)9−y

= 0.0014

for a Binomial(n = 9, p = 1/9) variable Y .

Similarly, M̂∗

i ≤ 3 if at least 5 of 9 values in Bi do not exceed 3. The probability of that is

F ∗(3) = P (Y ≥ 5) =

9∑

y=5

( 9
y

) (2

9

)y (
7

9

)9−y

= 0.0304

for a Binomial(n = 9, p) variable Y , where p = 2/9 is a probability to sample either X∗

ij = 2
or X∗

ij = 3.
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Proceeding in a similar fashion, we get

F ∗(4) =
9∑

y=5

(
9
y

) (3

9

)y (
6

9

)9−y

= 0.1448,

F ∗(5) =

9∑

y=5

( 9
y

) (7

9

)y (
2

9

)9−y

= 0.9696, and

F ∗(8) = 1.

From this cdf, we can find the bootstrap probability mass function of M̂∗

i ,

P ∗(2) = 0.0014, P ∗(3) = 0.0304− 0.0014 = 0.0290, P ∗(4) = 0.1448− 0.0304 = 0.1144,

P ∗(5) = 0.9696− 0.1448 = 0.8248, P ∗(8) = 1− 0.9696 = 0.0304.

From this, the bootstrap estimator of E(M̂) is the expected value of the bootstrap distri-
bution,

E∗(M̂∗

i ) = (2)(0.0014) + (3)(0.0290) + (4)(0.1144) + (5)(0.8248) + (8)(0.0304) = 4.9146.

Last step! The bias of M̂ is defined as h(P) = Bias(M̂) = E(M̂)−M . We have estimated

the first term, E(M̂). Following the bootstrap ideas, what should we use as an estimator
of M , the second term of the bias? The answer is simple. We have agreed to estimate g(P)
with g(S), so we just estimate the population median g(P) = M with the sample median

g(S) = M̂ = 5 obtained from our original sample S.

The bootstrap estimator of Bias(M̂) = E(M̂)−M (based on all possible bootstrap samples)
is

η(S) = B̂ias(M̂) = E∗(M̂)− M̂ = 4.9146− 5 = −0.0852 .
♦

Although the sample in Example 1.3 is still rather small, the method presented can be
extended to a sample of any size. Manual computations may be rather tedious here, but
one can write a suitable computer code.

1.0.2 Computer generated bootstrap samples

Modern Statistics makes use of many complicated estimates. As the earliest examples, Efron
used bootstrap to explore properties of the sample correlation coefficient, the trimmed
mean1, and the excess error2, but certainly, there are more complex situations. Typically,
samples will be too large to list all the bootstrap samples, as in Table 1.1, and the statistics
will be too complicated to figure out their bootstrap distributions, as in Example 1.3.

This is where Monte Carlo simulations kick in. Instead of listing all possible bootstrap
samples, we use a computer to generate a large number b of them. The rest follows our
general scheme on Figure 1.2, p. 3.

1Trimmed mean is a version of a sample mean, where a certain portion of the smallest and the largest

observations is dropped before computing the arithmetic average. Trimmed means are not sensitive to a few

extreme observations, and they are used if extreme outliers may be suspected in the sample.
2This measures how well one can estimate the error of prediction in regression analysis. We study

regression in the next chapter.
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Bootstrap
(generated
bootstrap
samples)

To estimate parameter η of the distribution of θ̂ :
1. Generate a large number b of bootstrap samples drawn with
replacement from the given sample S.

2. From each bootstrap sample Bi, compute statistic θ̂∗i the

same way as θ̂ is computed from the original sample S.
3. Estimate parameter η from the obtained values of θ̂∗1 , . . . , θ̂

∗

b .

This is a classical bootstrap method of evaluating properties of parameter estimates. Do
you think it is less accurate than the one based on all the bootstrap samples? Notice that
b, the number of generated bootstrap samples, can be very large. Increasing b gives more
work to your computer, but it does not require a more advanced computer code or a larger
original sample. And of course, as b → ∞, our estimator of η becomes just as good as if
we had a complete list of bootstrap samples. Typically, thousands or tens of thousands of
bootstrap samples are being generated.

Software notes

The following MATLAB code generates b bootstrap samples from the given sample X =
(X1, . . . , Xn).

Matlab

n = length(X); % Sample size

U = ceil(n*rand(b,n)); % A b× n matrix of random integers from 1 to n
B = X(U); % A matrix of bootstrap samples.

% The i-th bootstrap sample is in the i-th row.

For example, based on a sample X = (10, 20, 30, 40, 50) and generated matrix U of random
indices, we obtain a matrix B of bootstrap samples,

U =




1 4 5 5 1
3 2 3 1 5
3 4 5 2 3
1 4 1 2 3
2 4 3 5 1
1 3 1 3 5
4 1 5 5 4
2 2 1 1 2
3 5 4 2 3
1 1 5 1 3




, B =




B1

B2

B3

B4

B5

B6

B7

B8

B9

B10




=




10 40 50 50 10
30 20 30 10 50
30 40 50 20 30
10 40 10 20 30
20 40 30 50 10
10 30 10 30 50
40 10 50 50 40
20 20 10 10 20
30 50 40 20 30
10 10 50 10 30




If b and n are so large that storing the entire matrices U and b requires too many computer
resources, we can generate bootstrap samples in a do-loop, one at a time, and keep the
statistics θ̂i only.

In fact, MATLAB has a special command bootstrp for generating bootstrap samples and
computing estimates from them. For example, the code
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M = bootstrp(50000,@median,S);

takes the given sample S, generates b = 50, 000 bootstrap samples from it, computes medians
from each of them, and stores these median in a vector M . After that, we can compute
various sample statistics of M , the mean, standard deviation, etc., and use them to evaluate
the properties of a sample median.

In R, generating b bootstrap samples and saving their medians is rather simple, making use
of the command sample.

R

for (k in 1:B){ # Do-loop to produce B bootstrap samples

b <- sample( n, n, replace=1 ) # Random subsample with replacement

BootMedian[k] <- median(X[b]) } # Compute medians of bootstrap samples

After this, sd(BootMedian) returns the bootstrap estimator of Std(M̂), the standard de-
viation of the sample median; quantile(BootMedian,0.10) is the tenth percentile of the

distribution of M̂ , etc.

Also, R has a special package boot for bootstrap inference. To take advantage of it, we have
to define our statistic of interest as a function of a sample.

R

median.fn <- function(X,subsample){ return(median(X[subsample])) }
# Now we invoke package "boot" and apply it to our new function median.fn

install.packages("boot"); library(boot);

boot( X, median.fn, R=10000 )

This will generate b = 10, 000 bootstrap samples from sample X , compute their medians,
and use them to calculate bootstrap estimates of the bias and standard error of the sam-
ple median. Other bootstrap statistics can be computed from the whole set of generated
bootstrap medians θ̂∗

1
, . . . , θ̂∗b . We obtain it as component t of the object resulting from the

boot command. For example,

BootMed <- boot(X, median.fn, R=10000)$t

Would you expect the same results when you run this code again? You should not. We realize
that this estimation algorithm includes random number generation, and so, our results are
random, and they will differ from each other. On the other hand, the differences between
our bootstrap estimates will be small when the number of bootstrap samples b is large.

Example 1.4 (Bias of a sample median (continued)). Based on the sample

S = (3, 5, 8, 5, 5, 8, 5, 4, 2)

from Example 1.3, we estimated the population median θ with the sample median θ̂ = 5.
Next, we investigate the properties of θ̂. These computer codes will estimate the bias of θ̂,
the standard error, the first quartile, and the probability of θ̂ > 4.
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R Matlab

S <- c(3,5,8,5,5,8,5,4,2);

b <- 100000;

median.fn <- function(X,subsample){
return(median(X[subsample])) }

install.packages("boot"); library(boot);

BootMed <- boot(X,median.fn,R=10000)$t

biasM <- mean(M)-median(S)

sterrM <- sd(M)

q25 <- quantile(BootMed,0.25)

prob4 <- mean(M > 4)

S = [3 5 8 5 5 8 5 4 2];

b = 100000;

M = bootstrp(b,@median,S);

biasM = mean(M)-median(S);

sterrM = std(M);

q25 = quantile(BootMed,0.25);

prob4 = mean(M > 4);

Vector M contains bootstrap statistics θ̂∗1 , . . . , θ̂
∗

b . Based on b = 100, 000 bootstrap samples,
we obtained

B̂ias∗(θ̂) = M − θ̂ = −0.0858,

s∗(θ̂) = s(M) = 0.7062, and

P̂
∗

(θ̂ > 4) =
#
{
i : θ̂∗i > 4

}

b
= 0.8558.

♦

1.0.3 Bootstrap confidence intervals

In the previous chapters, we learned how to construct confidence intervals for the population
mean, proportion, variance, and also, difference of means, difference of proportions, and ratio
of variances. Normal, T , χ2, and F distributions were used in these cases. These methods
required either a Normal distribution of the observed data or sufficiently large samples.

There are many situations, however, where these conditions will not hold, or the distribution
of the test statistic is too difficult to obtain. Then the problem becomes nonparametric, and
we can use bootstrap to construct approximately (1 − α)100% confidence intervals for the
population parameters.

Two methods of bootstrap confidence intervals are rather popular.

Parametric method, based on the bootstrap estimation of the standard error

This method is used when we need a confidence interval for a parameter θ, and its estimator
θ̂ has approximately Normal distribution.

In this case, we compute s∗(θ̂), the bootstrap estimator of the standard error σ(θ̂), and use
it to compute the approximately (1− α)100% confidence interval for θ,

Parametric bootstrap
confidence interval

θ̂ ± zα/2s
∗(θ̂) (1.2)
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It is similar to our usual formula for the confidence interval in the case of Normal distribu-
tion, and zα/2 = q1−α/2 in it, as always, denotes the (1− α/2)-quantile from the Standard
Normal distribution.

Example 1.5 (Confidence interval for a correlation coefficient). The “an-
tivirus” data set below contains the data on the number of times X the antivirus software
was launched on 30 computers during 1 month and the number Y of detected worms,

X 30 30 30 30 30 30 30 30 30 30 30 15 15 15 10
Y 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0

X 10 10 6 6 5 5 5 4 4 4 4 4 1 1 1

Y 0 2 0 4 1 2 0 2 1 0 1 0 6 3 1

Scatter plots showed existence of a negative correlation between X and Y , which means
that in general, the number of worms reduces if the antivirus software is used more often.

Next, the computer manager asks for a 90% confidence interval for the correlation coefficient
ρ between X and Y .

The following MATLAB code can be used to solve this problem. This is a detailed step-by-
step solution that our readers can translate line by line to other software languages.

Matlab

alpha = 0.10;

X = [30 30 30 30 30 30 30 30 30 30 30 15 15 15 10 10 10 6 6 5 5 5 4 4 4 4 4 1 1 1];

Y = [0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 2 0 4 1 2 0 2 1 0 1 0 6 3 1];

r = corrcoef(X,Y); % correlation coefficient from the given sample

r = r(2,1); % because corrcoef returns a matrix of correlation coefficients

b = 10000; n = length(X);

U = ceil(n*rand(b,n));

BootX = X(U); BootY = Y(U); % Values X and Y of generated bootstrap samples

BootR = zeros(b,1); % Initiate the vector of bootstrap corr. coefficients

for i=1:b;

BR = corrcoef(BootX(i,:),BootY(i,:));

BootR(i) = BR(2,1);

end;

s = std(BootR); % Bootstrap estimator of the standard error of r

CI = [ r + s*norminv(alpha/2,0,1), r + s*norminv(1-alpha/2,0,1) ];

disp(CI) % Bootstrap confidence interval

♦
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FIGURE 1.3: The histogram of bootstrap

correlation coefficients.

As a result of this code, we get the sample
correlation coefficient r = −0.4533, and also,
b = 10, 000 bootstrap correlation coefficients
r∗
1
, . . . , r∗b obtained from b generated bootstrap

samples.

Next, we notice that for the sample of size
n = 30, r has approximately Normal distribu-
tion. For example, this can be confirmed by the
histogram of bootstrap correlation coefficients
on Figure 1.3.

Applying the parametric method, we compute
s∗(r) = 0.1028, the standard error of r∗

1
, . . . , r∗b ,

and use it to construct the 90% confidence in-
terval

r ± zα/2s
∗(r) = −0.4533± (1.645)(0.1028) = [-0.6224, -0.2841]

This step-by-step MATLAB code can be translated to other software languages, including
R. However, let’s use the R package boot to see how we can handle the correlation coefficient
which is a function of two variables X and Y instead of one.

We’ll define a data frame D consisting of these two observed variables and then a function
correl of it.

R

X <- c(rep(30,11),15,15,15,10,10,10,6,6,5,5,5,4,4,4,4,4,1,1,1)

Y <- c(0,0,1,0,0,0,1,1,0,0,0,0,1,1,0,0,2,0,4,1,2,0,2,1,0,1,0,6,3,1)

D <- data.frame(X,Y)

correl <- function(D,subsample){
X <- D[subsample,1]; Y <- D[subsample,2];

return( cor(X,Y) )

}
install.packages("boot"); library(boot);

BootR <- boot(data=D, statistic=correl, R=10000)$t

alpha <- 0.10; r <- cor(X,Y); s <- sd(BootR);

CI <- c( r + s*qnorm(alpha/2), r + s*qnorm(1-alpha/2) )

print(CI)

♦

Nonparametric method, based on the bootstrap quantiles

Equation 1.2 simply estimates two quantiles qα/2 and q1−α/2 of the distribution of statistic

θ̂, so that

P

{
qα/2 ≤ θ̂ ≤ q1−α/2

}
= 1− α. (1.3)

Since θ̂ estimates parameter θ, this becomes an approximately (1 − α)100% confidence
interval for θ.
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FIGURE 1.4: The histogram of bootstrap me-

dians.

This method fails if the distribution of θ̂
is not Normal. The coverage probability in
(1.3) may be rather different from (1 − α)
in this case. However, the idea to construct
a confidence interval based on the quantiles
of θ̂ is still valid.

The quantiles qα/2 and q1−α/2 of the distri-

bution of θ̂ will then be estimated from the
bootstrap samples. To do this, we generate
b bootstrap samples, compute statistic θ̂∗

for each of them, and determine the sam-
ple quantiles q̂∗α/2 and q̂∗

1−α/2 from them.
These quantiles become the end points of
the (1− α)100% confidence interval for θ.

Nonparametric bootstrap
confidence interval
for parameter θ

[
q̂∗α/2, q̂∗

1−α/2

]
,

where q∗α/2 and q̂∗
1−α/2 are quantiles

of the distribution of θ̂ estimated from
bootstrap samples

(1.4)

Example 1.6 (Confidence interval for the median CPU time). Based on the
following observed CPU times, let us now compute the 95% bootstrap confidence interval
for the median CPU time.

70 36 43 69 82 48 34 62 35 15
59 139 46 37 42 30 55 56 36 82
38 89 54 25 35 24 22 9 56 19

R

alpha <- 0.05;

X <- c( 70, 36, 43, 69, 82, 48, 34, 62, 35, 15, 59, 139, 46, 37, 42,

30, 55, 56, 36, 82, 38, 89, 54, 25, 35, 24, 22, 9, 56, 19)

median.fn <- function(X,subsample){ return(median(X[subsample])) }
install.packages("boot"); library(boot);

BootMed <- boot(data=X, statistic=median.fn, R=50000)$t

print( c( quantile(BootMed,alpha/2), quantile(BootMed,1-alpha/2) ) )

Matlab

alpha = 0.05;

X = [ 70 36 43 69 82 48 34 62 35 15 59 139 46 37 42 ...

30 55 56 36 82 38 89 54 25 35 24 22 9 56 19]’;

b = 50000; n = length(X);

U = ceil(n*rand(b,n)); BootX = X(U); BootM = zeros(b,1);

for i=1:b; BootM(i) = median(BootX(i,:)); end;

CI = [ quantile(BootM,alpha/2), quantile(BootM,1-alpha/2) ]

These programs generate b = 50, 000 bootstrap samples and compute their sample medians
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θ̂∗
1
, . . . , θ̂∗b (variable BootM). Based on these sample medians, the 0.025- and 0.975-quantiles

are calculated. The 95% confidence interval CI then stretches between these quantiles, from
q̂∗0.025 to q̂∗0.975.

This algorithm results in a confidence interval [35.5, 55.5].

By the way, the histogram of bootstrap medians θ̂∗
1
, . . . , θ̂∗b on Figure 1.4 shows a rather

non-Normal distribution. We were essentially forced to use the nonparametric approach.
♦

MATLAB has a special command bootci for the construction of bootstrap confidence
intervals. The problem in Example 1.6 can be solved by just one command

bootci(50000,{@median,X},’alpha’,0.05,’type’,’percentile’)

where 0.05 denotes the α-level, and ’percentile’ requests a confidence interval computed
by the method of percentiles. This is precisely the nonparametric method that we have
just discussed. Replace it with type ’normal’ to obtain a parametric bootstrap confidence
interval that is based on the Normal distribution (1.2).


