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Abstract. A generalized maximum entropy based approach to noisy inverse problems such as the
Abel problem, tomography, or deconvolution is discussed and reviewed. Unlike the more traditional
regularization approach, in the method discussed here, each unknown parameter (signal and noise)
is redefined as a proper probability distribution within a certain pre-specified support. Then, the joint
entropies of both, the noise and signal probabilities, are maximized subject to the observed data. We
use this method for tomographic reconstruction of the soft x-ray emissivity of hot fusion plasma.

INTRODUCTION

The objective of this short paper is to summarize, explore and review a generalized
inversion procedure for the tomography problem. This generalized inversion procedure,
call it Generalized Maximum Entropy (GME), extends the classical Maximum Entropy
(ME) formalism of Jaynes [1,2] and the information theoretical approach of Levine
[3] by directly adjusting for the noise in the observed data. Therefore, this approach
provides a more conservative inference from noisy data, does not employ the traditional
regularization parameter, and is free of distributional assumptions.

In the next section we start by formulating the tomography problem, describe the
detailed estimation method, and then provide the necessary diagnostics and inferential
statistics. In Section 3 we discuss the continuous limit of this method. In Section 4, the
experiment and results are presented. Some concluding remarks are then discussed.

THE BASIC TOMOGRAPHY PROBLEM

Consider the following discretized tomography model

sk = ∑
i; j

pk
i j Ei j + εk (1)

wheres is a K-dimensional vector of observed signals recorded by detector k,P is a
(J� I) known matrix of the proportion of the emissionEi j accumulated in detector k,
Ei j is a(J� I) matrix of unknowns to be recovered with the property thatEi j � 0, andε
is a vector of independently and identically distributed noise.

Our objective is to recoverE from the aggregated noisy datas. If the number of
unknowns outnumbers the number of data points this problem is ill-posed (under-



determined) and one needs to choose a certain criterion to reduce the problem to a
well-posed problem. The classical Maximum Entropy (ME) formalism provides such
an inversion procedure where one maximizes the entropy ofE subject to the available
information. See for example [4] for applying the ME method to analyzing the tomog-
raphy problem.

However, for noisy data, if we want to avoid distributional assumptions, then regard-
less of the number of observations (data points) the problem is always ill-posed or under-
determined. The GME method we now describe, conforms to the above requirement of
no a-priori specification of the underlying distribution/s.

As a first step, bothEi j and εk’s need to be transformed into proper probabilities.
This transformation is necessary in order to build an estimation method within the
philosophy of the classical ME [1,2,3] and information theory. Following [5], the model
is reparametrized as

sk = ∑
i; j

pk
i j Ei j + εk = ∑

i; j;m
pk

i j qi jmzm+∑
l

wklvl (2)

whereqi j is an M-dimensional vector of(I �J) proper probability distributions satisfy-
ing

∑
m

qi jm = 1 (3)

and each one of the point estimatesEi j is now defined as

∑
m

zmqi jm � Ei j :

For now we define the vectorz as an M-dimensional discrete support space withM� 2
specified such thatz0 = (z1; :::;zM) where ’0’ stands for “transpose”. The continuous
support case is discussed in Section 3. If for example due to physical argumentsEi j � 0,
then allzm must be non-negative. In a similar way,wk is viewed as an L-dimensional
vector ofK proper probability distributions satisfying

∑
l

wkl = 1 ∑
l

vl wkl � εk (4)

where the vectorv is an L-dimensional discrete support space withL� 2 and symmetric
around zero. Specifically,v0 = (v1; :::;0; :::;vL) wherev1 =�vL.

With the above specification, in the GME framework, one maximizes the joint en-
tropies of the signal,fqi jg, and the noise,fwkg, subject to the available data (Equation
2) and the requirements of proper distributions. Since one usually have some prior infor-
mation in such problems, we formulate the estimation problem in terms of the Cross En-
tropy (CE) formalism. Let the prior information for the setfqi jg, defined on the support
z, befq0

i jg. Similarly, within the support spacev, the priors for the noise components are

w0
k, and are always taken to beuniformover the symmetric supportv. This generalized

cross entropy (GCE), or generalized inversion procedure, is

Min
q;w

I
�
q;w;q0;w0�=

(
∑

i; j;m
qi jm log

�
qi jm

Æ
q0

i jm

�
+∑

k;l

wkl log
�
wkl

Æ
w0

kl

�)
(5)



subject to
sk = ∑

i; j
pk

i j Ei j + εk = ∑
i; j;m

pk
i j qi jmzm+∑

l

wklvl

∑
m

qi jm = 1 ∑
l

wkl = 1

The optimization yields

q�i jm =
q0

i jm exp
�

∑k λ�kpk
i j zm

�
∑mq0

i jm exp
�

∑k λ�kpk
i j zm

� � q0
i jm exp

�
∑kλ�kpk

i j zm

�
Ωi j (λ�)

(6)

and

w�

kl =
w0

kl exp
�
λ�kvl

�
∑l w0

kl exp
�
λ�kvl

� � w0
kl exp

�
λ�kvl

�
Ψk

�
λ�k
� (7)

where λ� are the optimal (estimated) Lagrange multipliers associated with the data
restrictions (2).

Building on the Lagrangian, the dual, concentrated, unconstrained problem (as a
function ofλ) is

L(λ) = ∑
k

skλk�∑
i; j

logΩi j (λ)�∑
k

logΨk (λ) : (8)

Taking the first derivatives of (8) with respect toλ and equating to zero, yields the
optimalλ’s, λ� which in turn yield {q�

i j }, { w�

k} and the estimated errors {ε�}.
A main feature of this generalized method, is that by introducing the noise and the

additional set of probability distributions {w}, the level of complexity and computation
time (relative to the classical ME or any other inversion procedure) does not increase.
This is because the basic number of the parameters of interest, the Lagrange multipliers,
remains unchanged. In other words, regardless of the number of points in the support
spaces (including the continuous case) there areK Lagrange multipliers and both {qi j }
and {wk} are unique functions of these parameters. This follows directly from (8).

Under this generalized criterion function (the primal 5 or the dual 8), the objective is
to minimize the joint entropy distance between the data and the priors. As such, the noise
is always pushed toward zero but is not forced to be exactly zero for each data point. It is
a “dual-loss” objective function that assigns equal weights to prediction and precision.
These weights can be changed if one wishes to impose higher relative weights on the
precision or the prediction parts respectively. Equivalently, this method can be viewed
as a shrinkage inversion procedure that simultaneously shrinks the data to the priors and
the errors to zero. For a detailed discussion and comparison with other methods see [6].

ENTROPY, INFORMATION AND DIAGNOSTICS

Within the GME-GCE approach used here, the amount of information in the estimated
coefficients is captured via the normalized entropy:



S(Q�)�

� ∑
i; j;m

q�i jm logq�i jm

(I �J) logM
: (9)

This measure, which reflects the information in the whole system, is between zero
and one with one reflecting complete ignorance and zero reflecting perfect knowledge.
If the GCE is used, the divisors should be the entropy of the relevant priorsfq0

i jg.
Finally, a similar normalized measures reflecting the information in each one of the
i; j 0sdistributions are easily defined.

For inferential purposes it would be of interest to relate the estimates with some well
defined distribution. To do so, we use the Entropy-Ratio (ER) test (which is an analogue
to the maximum likelihood ratio test). LetlΩ be the constrained (by the data: Equation
2) GME (uniform priors case) with the optimal value of the objective function (5). Next,
let lω be the value of the unconstrained objective function (5) whereλ = 0 and therefore
the maximum value of (5) is just(I �J) logM+K logL (e.g., optimizing with respect to
no data). Hence, the ER statistic is just

W(GME) = 2lω�2lΩ = 2[(I �J) logM+K logL][1�S(q�;w�)]: (10)

Under the null hypothesis ofλ=0, W(GME) converges in distribution toχ2
(K�1) which

enables us to perform any type of single or composite hypothesis test.
A “goodness of fit”, or in-sample prediction, measure that relates the normalized

entropy measureS(Q) to the traditionalR2 is just

Pseudo�R2� 1�
lΩ
lω

= 1�S(q�): (11)

Finally, using the dual approach, the objective here is to recover theK unknowns,
which in turn yield theJ� I matrix E. However, in many circumstances, it may be of
interest to also evaluate the impact of the elements of the knownP on eachEi j (or qi jm).
That is, many times the more interesting parameters are these marginal effects. These
marginal effects are just

∂qi jm

∂pk
i j

= qi jm
�
λkzm�Hi jk

�
(12)

∂Ei j

∂pk
i j

= ∑
m

∂qi jm

∂pk
i j

zm = ∑
m

qi jm
�
λkzm�Hi jk

�
zm

whereHi jk � ∑mqi jmλkzm. These effects can be evaluated at the mean values of the
sample, or individually for each observation and may be used to evaluate the optimal
experimental design. For the tomography problem, however, the more interesting values
may be∂Ei j =∂sk or the simpler quantity∆E2

i j = ∑
k

�
∂Ei j =∂sk

�2
which reflects the vari-

ances of the reconstructed image. For further discussion and derivation of the covariance
matrix see [6].



EXTENSIONS TO THE CONTINUOUS SUPPORTS

Recalling thatv andz are closed, convex sets, we now investigate the behavior of the
GME/GCE estimation rule at the limit ofM ! ∞ andL! ∞, while holding everything
else unchanged. These limits are related to the notion ofsuper-resolutionand can also be
viewed as some measures ofsufficient statistics. For simplicity of exposition, we discuss
here the case ofL ! ∞ which relates to the errors’ supportv. We demonstrate here two
cases: uniform and Normal distributions.

Within our previous definition, assumevk� εk� v̄k wherevk andv̄k are the lower and

upper bounds ofv respectively, and letV =
K
∏

k=1
(vk; v̄k) be the joint space of all theK

supports . Note that in many cases the choicevk = v andv̄k = v̄ for all k=1, 2, . . . , K is
appropriate. Assuming uniform a-priori information (withinV) for each error, implies

dW0(ζ) =
K

∏
k=1

dζk

(v̄k�vk)
(13)

whereW0 reflects our prior knowledge. To be consistent with the discrete version
presented earlier, we choose to work with a continuous uniform distribution within
the boundsv and v̄. Building on this prior information the post-dataW is dW(ζ) =
ρ(ζ)dW0(ζ). Maximizing the entropy (or similarly minimizing the cross-entropy)

I
�
W;W0�=�

Z

V

ρ(ζ) logρ(ζ)dW0(ζ) (14)

subject to the data and the normalization requirements yields

dW(ζ) =
e�λ0ζ

Ψ(λ)
dW0(ζ) (15)

Finally,

Ψk(λ�) =
e�λ�kv�e�λ�kv̄

λ�k (v̄�v)
(16)

and

ε�k =
1

(v̄�v)

(
ve�λ�kv� v̄e�λ�kv̄

λ�k
+

e�λ�kv�eλ�kv̄

λ�2
k

)
(17)

and the dual is just

L(λ) = ∑
k

skλk�∑
i; j

logΩi j (λ)�∑
k

logΨk(λ) (18)

whereΨk is defined by (15).



Next, we consider the normal distribution where, unlike the previous (continuous
uniform) case, the noise vectorε is allowed to take any value. The prior distribution

is thenW0(dηK) =
�
2πσ2

�
�K/2exp(�η0η=2σ2)dηK. If we allow the noise components

to be correlated among the K degrees of freedom (observed data points), or similarly
we do not exclude the possibility that the K observations are correlated via the vectorε,
then,

Ψ(dηK) =

�
detΣ
2π

�K/2
exp

�
�
�
η0Σ�1η

�
=2
�
dηK (19)

whereΣ is the (known or unknown) covariance matrix.
Starting with the simpler case (no autocorrelations), the corresponding set of partition

functionsfΨkg,Ψ, is

Ψ(λ) =
R e�λ0ηe�η0η=2σ2

(2πσ2)
K/2 dηK =

K
∏

k=1

�
1

(2πσ2)
K/2

�R
e�λkηk�η2

k=2σ2
dηk =

K
∏
i=1

eλ2
kσ2=2:

(20)

Substituting (20) into (8) yields

L(λ) = ∑
k

skλk�∑
i; j

logΩi j (λ)�∑
k
(σ2λ2

k=2) : (21)

Minimizing the dual (21) yields the desiredλ*, which, in turn, determines the estimated
noise probabilities, where the mean of the post-data (or estimated) noise is just –σ2λ*.
This means that, for finite samples, the posterior distribution of the noise may have a
non-zero mean which in turn implies superior finite sample estimates.

The more general case where observations may be autocorrelated is a straight forward
extension of the above where

Ψ(λ) =
Z

e�λ0η
�

detΣ
2π

�K=2

e�(η0Σ�1η)dηK = e(λ
0Σλ)=2 (22)

Finally, substituting (22) for (20) within the dual, unconstrained model (21) yields the
desired estimates that in turn yieldε� =�Σλ�.

EXPERIMENT AND RESULTS

The method discussed earlier in this paper has been applied to the reconstruction of
the soft x-ray emissivity of a hot fusion plasma. The experimental setup employed to
collect the data is schematically shown in Figure 1. Soft x-rays emitted by the plasma



36 detectors

36 detectors

30x30 pixels

FIGURE 1. A sketch of the x-ray set up and pixel arrangement used for the emissivity reconstruction.

are detected by two pin hole cameras each equipped with an array of 30 surface barrier
detectors. Each detector signal,sk, recorded by diodek depends linearly on the unknown
local emissivityEi j defined on the square mesh, shown in Figure 1, withi, j = 1, ..., 30.
The physically meaningful support for the reconstruction is, however, not the whole
grid. It is restricted rather to the area within the grid where viewing chords from the two
cameras cross. Fortunately, this area is larger than the plasma cross section as obtained
from equilibrium calculations and shown in Figure 1 as the closed triangularly shaped
curve. Inside the physically meaningful region we choose a flat default model forEi j

(E0
i j = 10�2) and outside this region we takeE0

i j = 10�5, a choice which serves to push
the emissivity towards zero in the region which does not contribute information to the
data. The pixel matrixPk

i j used in this work is identical to the one used earlier [4].
Keeping our objective of minimal distributional assumptions in mind, the support

space for each error term is chosen to be uniformly symmetric around zero. For example,
for L = 3, v’=(-α, 0, α). If we knew the correct variance, a reasonable rule forα
is the three-standard deviation rule. However, given our incomplete knowledge of the
correct value of the scale parameterσ, we use the sample variance, given to us by
the experimentalists, as an estimate forα. The experimental input data were specified
with an error of 5%. Therefore, we usedν0k = (�0:15sk;0;0:15sk) = (�3σk;0;0:3σk) =
(�αk;0;αk) as the bounds for the support ofε. For a detailed set of experiments
investigating the small sample behavior of the three-sigma rule see [7].

Finally, the specification of the support forEi j requires the choice of a scale for the



FIGURE 2. A reconstruction of the emissivity profiles using GME.

emissivities. Luckily, the researcher usually knows this choice from the physics of the
problem. In the present case we draw on existing results and a-priori knowledge and
chosez’=(0, 0.01, 0.02)which extends sufficiently beyond the maximum emissivity. It
is important to note that the estimated values are not sensitive to this choice as long as
the pre-determined choice is consistent with the physics of the problem.

Figures 2 and 3 show the reconstructed soft x- ray emissivity. The data in Figure
2 result from estimation using the method described in this paper. In that case, the
entropy-ratio statistic is 152.8, which is significant at the 1% level. Figure 3 was obtained
using quantified maximum entropy [4,8]. Table 1 summarizes the basic statistics of these
estimates. To make these statistics comparable, the estimates of the quantified entropy
method were transformed to be fully consistent with those of the GME.
TABLE 1. The Different Statistics Resulting From the GME and The Quantified ME.

GME
(Fig. 2)

Quantified ME
(Fig. 3)

GME – CASE B
(Fig. 5)

Normalized Entropy 0.171 0.157 0.123

Pseudo-R2 0.829 0.843 0.877

Ent-Ratio Statistic 152.8 2140.0 121.4

Approximate Computing
Time

1 second on a PC,
Pentium III

20 seconds on an IBM
370 Workstation

1 second on a PC,
Pentium III



FIGURE 3. A reconstruction of the emissivity profiles using the quantified ME method.

DISCUSSION AND SUMMARY

As is expected, at a first sight, the overall shape of the two results seems to be very much
the same. But investigation of these two figures reveals that the main difference between
the two profiles is the significantly more spiky surface (even outside the physically
meaningful region) of the traditional quantified maximum entropy reconstruction. This
is not unexpected because, in the present treatment (Figure 2), misfits between the data
and the model (2) are absorbed in an individual and self-consistent way through the
errorsεk � ∑l wklvl . In the quantified maximum entropy treatment, on the other hand,
the errors are fixed and misfits are reflected in a “rough” reconstruction. Further, in the
quantified ME approach a quadratic loss function, that pushes the errors to zero in a
faster rate, is employed, which is also reflected in the “rough” reconstruction.

To demonstrate the qualitative differences of these two methods of estimation, Figure
4 presents “Figure 3 minus Figure 2”. The qualitative difference of these two estimation
methods and the relative smoothness of the new method are quite obvious. Further, this
difference in smoothness can be quantified. A convenient measure of the curvature and
hence the smoothness of a functionE(x;y) of the two variables (x, y) is the global second
derivative squared

φ=
Z (�

∂2E
∂x2

�2

+2

�
∂2E
∂x∂y

�2

+

�
∂2E
∂y2

�2
)

dxdy:



FIGURE 4. The difference between the estimates of the quantified entropy approach(Figure 3) and the
GME Figure 2)

Note that the lower bound ofφ is zero, which applies for a constant or a linear function
in x and y. We approximateφ by substituting finite second differences for the partial
derivatives [9]. In the analysis done hereφ is smaller by a factor of 4�107 for the GME
reconstruction as compared with the quantified ME reconstruction. As we expect plasma
emissivity reconstruction to yield a smooth surface, the results of our GME estimates
seem to be much more convincing.

An additional advantage of the present method on the previous treatment lies in the
fact that a single pass calculation provides the final results. By contrast, in the quantified
ME method, in order to find the most probable value of the hyperparameter controlling
the amount of regularization, repeated calculations are necessary for different values of
this parameter. Since about ten to twenty iterations have to be performed for inverting
the present data, the gain in computational speed is of the same order (e.g., in the present
case, twenty iteration were needed). This is of course very welcome for visualizing
plasma dynamics since the experimental system is capable of sampling at 4 microsecond
intervals. See details in the bottom row of Table 1.

Finally, another advantage of this approach is its robustness to the prior and model
specification. For example, instead of specifying the priors outside the physically mean-
ingful regime to be very small (Fig. 2), we specify the model such that the support space
for each pixel outside this regime is zero (see GME - Case B in Table 1 and Figure 5).
The specification inside this regime remains as before. That is, inside the regimez’=(0,



FIGURE 5. A reconstruction of the emissivity profiles using GME, but with support of zero outside the
physically meaningful regime.

0.01, 0.02)and outsidez=0. Regardless of this different specification, the reconstructed
image (Fig. 5) is practically equivalent to Figure 2. This similarity reveals the robust na-
ture of this procedure. The statistics for this case (see Table 1) are very similar to those
of column 2. But, as is expected, the goodness of fit measure (in-sample prediction) is
slightly superior to this of Figure 2.

To summarize, in this paper we reviewed, extended and explored a generalized,
informational based, inversion procedure for tomographic reconstruction. This approach
is (i) easy to apply and compute, (ii) uses less a-priori assumptions on the underlying
distribution that generated the data, (iii) accommodates for the noise in the data and thus
yields good estimates, and (iv) contains the classical ME as special case.

The experimental results, of reconstructing the soft x-ray emissivity of hot fusion
plasma, provided here demonstrated the advantages discussed above.
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