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Abstract

A semi-parametric, information-based estimator is used to estimate strategies in prices

and advertising for Coca-Cola and Pepsi-Cola. Separate strategies for each firm are estimated

with and without restrictions from game theory. These information/entropy estimators are

consistent and efficient. These estimates are used to test theories about the strategies of firms

and to see how changes in incomes or factor prices affect these strategies.

KEYWORDS: strategies, noncooperative games, oligopoly, generalized maximum

entropy, beverages
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1. INTRODUCTION

This paper presents two methods for estimating oligopoly strategies. The first method

allows strategies to depend on variables that affect demand and cost. The second method

adds restrictions from game theory. We use these methods to estimate the pricing and adver-

tising strategies of Coca-Cola and Pepsi-Cola.

Unlike most previous empirical studies of oligopoly behavior, we do not assume that

firms use a single pure strategy nor do we make the sort of ad hoc assumptions used in

conjectural variations models.1 Both our approaches recognize that firms may use either

pure or mixed (perhaps more accurately, distributional) strategies.

In our application to Coca-Cola and Pepsi-Cola, we assume that the firms’ decision

variables are prices and advertising. We divide each firm’s continuous price-advertising

action space into a grid over prices and advertising. Then we estimate the vector of probabil-

ities — the mixed or pure strategies — that a firm chooses an action (a rectangle in the price-

advertising grid). We use our estimates to calculate the Lerner index of market structure and

examine how changes in exogenous variables affect strategies.

The main advantages of using our method are that we can flexibly estimate firms’

strategies subject to restrictions implied by game theory and test hypotheses based on these

estimated strategies. The restrictions we impose are consistent with a variety of assumptions

regarding the information that firms have when making their decisions and with either pure or

mixed strategies.

1 Bresnahan (1989) and Perloff (1992) survey conjectural variations and other structural
and reduced-form "new empirical industrial organization" studies.
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For example, suppose that a firm’s marginal cost in a period is a random variable

observed by the firm but not by the econometrician. Given the realization of marginal cost,

the firm chooses either a pure or a mixed strategy, which results in an action: a price-

advertising pair. The econometrician observes only the firm’s action and not the marginal

cost. As a consequence, the econometrician cannot distinguish between pure or mixed strate-

gies. If both firms in a market use pure strategies and each observes its rival’s marginal cost,

each firm can anticipate its rival’s action in each period. Alteratively, firms might use pure

strategies and know the distribution but not the realization of their rival’s cost. Due to the

randomness of the marginal cost, it appears to both the rival and the econometrician that a

firm is using a mixed strategy. The equilibrium depends on whether firms’ private informa-

tion is correlated.

All of these possibilities — firms have only public information, firms observe each

other’s private information but the econometrician does not, or a firm only knows that its

private information is correlated or uncorrelated with its rival’s — lead to restrictions of the

same form. For expositional simplicity, we concentrate on the situation where firms have

private, uncorrelated information about their own - but not their rival’s - marginal costs (or

some other payoff-relevant variable). Firms choose either pure or mixed strategies.

There have been few previous studies that estimated mixed or pure strategies based on

a game-theoretic model. These studies (Bjorn and Vuong 1985, Bresnahan and Reiss 1991,

and Kooreman 1994) involve discrete action spaces. For example, Bjorn and Vuong and

Kooreman estimate mixed strategies in a game involving spouses’ joint labor market

participation decisions using a maximum likelihood (ML) technique. Our approach differs
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from these studies in three important ways. First, they assume that there is no exogenous

uncertainty. Second, they allow each agent a choice of only two possible actions. Third, in

order to use a ML approach, they assume a specific error distribution and likelihood function.

Despite the limited number of actions, their ML estimation problems are complex.

Our problem requires that we include a large number of possible actions in order to

analyze oligopoly behavior and allow for mixed strategies. Doing so using a ML approach

would be difficult if not impossible. Instead, we use a generalized-maximum-entropy (GME)

estimator. An important advantage of our GME estimator is its computational simplicity.

Using GME, we can estimate a model with a large number of possible actions and impose

inequality and equality restrictions implied by the equilibrium conditions of the game. In

addition to this practical advantage, the GME estimator does not require the same strong,

explicit distributional assumptions used in standard ML approaches. A special case of our

GME estimator is identical to the ML multinomial logit estimator (when the ML multinomial

logit has a unique solution), which indicates that those restrictions to the GME model is

identical to the distributional assumption of the standard approach.

In the next section, we present a game-theoretic model of firms’ behavior. In the third

section, we describe a GME approach to estimating this game. The fourth section contains

estimates of the strategies of Coke and Pepsi. In the final section, we discuss our results and

possible extensions.

2. OLIGOPOLY GAME

Our objective is to determine the strategies of oligopolistic firms using time-series data

on prices, advertising, quantities, and variables that affect cost or demand, such as input
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prices or seasonal dummies. We assume that two firms,i and j, play a static game in each

period of the sample.

The econometrician observes payoff-relevant public information, such as demand and

cost shifters,z, but does not observe private information known only to the firms. Firmi

(and possibly Firmj), but not the econometrician, observes Firmi’s marginal cost or some

other payoff-relevant random variableεi(t) in period t = 1, ...,T. Where possible, we sup-

press the time variablet for notational simplicity. The set ofK possible realizations,

{ ε1, ε2, ..., εK}, is the same every period for both firms. The distributions are constant over

time but may differ across firms. The firms, but not the econometrician, know these distribu-

tions. To simplify the description of the problem, we assume thatεi andεj are private,

uncorrelated information.

2.1 Strategies

The set ofn possible actions (price-advertising pairs) for Firmi is {xi
1, xi

2, ..., xi
n}. We

now describe the problem where the random state of nature is private information and

uncorrelated across firms.

The profit of Firm i in a particular time period isπi
rsk(z) = πi(xi

r, xj
s, ε i

k, z), wherer is

the action chosen by Firmi ands is the action chosen by Firmj. In statek, Firm i’s strategy

is α i
k(z) = (α i

k1(z), α i
k2(z), ..., α i

kn(z)), whereα i
kr(z) is the probability that Firmi chooses

actionxr given private informationε i
k and public informationz. If Firm i uses a pure

strategy,α i
kr(z) is one for a particularr and zero otherwise.

Firm j does not observe Firmi’s private information, so it does not know the condi-

tional probabilityα i
kr(z). Firm j knows, however, the distribution of Firmi’s private informa-
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tion. The Nash assumption is that Firmj knows the unconditional probability of Firmi using

action r. This probability is the expectation over Firmi’s private information:αi
r(z) = Ek

α i
kr(z), where Ek is the expectations operator. Similarly Firmi knows the unconditional

probability αj
s(z) of Firm j.

In statek, Firm i choosesαk(z) to maximize expected profits,Σs αj
s(z)πrsk(z), where

the expectation is taken over its rival’s actions. IfYi
k(z) is Firm i’s maximum expected profits

given ε i
k andz, then Firmi’s expected loss from using actionxr is

(2.1) L
i

r k (z ) ≡
s

α j
s (z ) π i

r s k(z ) Y
i

k (z ) ≤ 0,

which is non-positive. If it is optimal for Firmi to use actionr with positive probability, the

expected loss of using that action must be 0. Hence, optimality requires that

(2.2) L
i
rk (z ) α i

rk (z ) 0 .

The equilibrium to this game may not be unique. Our estimation method selects the pure or

mixed strategy equilibrium that is most consistent with the data.

2.2 Econometric Implications

Our objective is to estimate the firms’ strategies subject to the constraints implied by

optimization, Equations 2.1 and 2.2. We cannot use these constraints directly, however,

because they involve private informationε i
k. By taking expectations, we eliminate these

unobserved variables and obtain usable restrictions.
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We defineYi(z) ≡ Ek Yi
k(z) andπi

rs(z) ≡ Ek πi
rsk(z). Taking expectations with respect to

k of Equations 2.1 and 2.2 and using the previous definitions, we obtain

(2.3)
s

α j
s (z ) π i

rs (z ) Y i (z ) ≤ 0 ,

(2.4) 





s

α j
s (z ) π i

rs (z ) Y i (z ) αi
r (z ) δ i

r (z ) 0 ,

whereδi
r ≡ cov(Li

rk, αi
rk) ≥ 0. For each Firmi = 1, 2, we can estimate the unobservable

strategiesαi(z) subject to the conditions implied by Firmi’s optimization problem, Equations

2.3 and 2.4.2

Firms may use approximately optimal decisions due to bounded rationality, or there

may be measurement error. Therefore, we treat Equation 2.4 as a stochastic restriction and

include additive errors in estimation. Equation 2.4, however, already has an additive function,

δ(z), which we cannot distinguish from the additive error in 2.4. Thus,δ(z) is the only "error

term" we include in this equation.

If we tried to estimate this model (Equations 2.3 - 2.4) using traditional techniques, we

would run into two problems. First, imposing the various equality and inequality restrictions

2 If εi andεj are correlated or observed by both firms, the restrictions are slightly more
complicated. If information is correlated, it would be reasonable to suppose that Firmi’s
beliefs aboutj’s actions depend on the realization ofεi, so thatαj

s is replaced byα j
ks. If

information is observed by both firms, Firmi’s beliefs would also be conditioned on the
realization ofεj. In both cases, we can take expectations with respect to the private informa-
tion and obtain equations analogous to 2.3 and 2.4. However, with either generalization, we
would have an additional additive term in 2.3, sayθ, and the definition ofδ would be
changed. The signs of bothθ andδ would be indeterminate. In our empirical application to
the cola market, all the estimatedδ are positive, which is consistent with the model in the text
whereεi andεj are uncorrelated.
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from our game-theoretic model would be very difficult if not impossible with standard

techniques. Second, as the problem is ill posed in small samples (there may be more param-

eters than observations), we would have to impose additional assumptions to make the

problem well posed. To avoid these and other estimation and inference problems, we propose

an alternative approach.

3. GENERALIZED-MAXIMUM-ENTROPY ESTIMATION APPROACH

We use generalized maximum entropy (GME) to estimate the firms’ strategies. In this

section, we start by briefly describing the traditional maximum entropy (ME) estimation

procedure. Then, we present the GME formulation as a method of recovering information

from the data consistent with our game. Our GME method is closely related to the GME

multinomial choice approach in Golan, Judge, and Perloff (1996 — henceforth GJP). Unlike

ML estimators, the GME approach does not require explicit distributional assumptions,

performs well with small samples, and can incorporate inequality restrictions.

3.1 Background: Classical Maximum Entropy Formulation

The traditional entropy formulation is described in Shannon (1948), Jaynes (1957a;

1957b), Kullback (1959), Gokhale and Kullback (1978), Levine (1980), Jaynes (1984), Shore

and Johnson (1980), Denzau, Gibbons, and Greenberg (1989), Skilling (1989), Csiszár (1991),

Soofi (1992, 1994) and Golan, Judge, and Miller (1996). In this approach, Shannon’s (1948)

entropy is used to measure the uncertainty (state of knowledge) we have about the occurrence

of a collection of events. Lettingx be a random variable with possible outcomesxs, s = 1, 2,
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…, n, with probabilitiesαs such thatΣs αs = 1, Shannon (1948) defined theentropyof the

distributionα = (α1, α2, ..., αn)’, as

(3.1) H ≡
s

αs ln αs ,

where 0 ln 0≡ 0. The functionH, which Shannon interprets as a measure of the uncertainty

in the mind of someone about to receive a message, reaches a maximum whenα1 = α2 = …

= αn = 1⁄n. To recover the unknown probabilitiesα, Jaynes (1957a; 1957b) proposed maxi-

mizing entropy, subject to available sample-moment information and adding up constraints on

the probabilities.

The frequency that maximizes entropy is an intuitively reasonable estimate of the true

distribution when we lack any other information. If we have information from the exper-

iment, such as the sample moments, or non-sample information about the random variable,

such as restrictions from economic theory, we want to alter our "intuitively reasonable"

estimate. The method of Maximum Entropy proceeds by choosing the distribution that

maximizes entropy, subject to the sample and non-sample information.

In our game, the firms’ price-advertising decisions are the random variables that

correspond tox in the previous example. We want to estimate the firms’ strategies, which are

their probability distributions over their actions. The next two subsections explain how we

incorporate sample and non-sample (theory) information. In our application, the sample

information for cola manufacturers consists of time series of price-advertising pairs for each

firm, quantities sold, and time series of exogenous variables that affect demand (a seasonal
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dummy and income) and cost (an interest rate, a wage rate, and the price of sugar). The

game-theoretic restrictions, Equations 2.3 - 2.4, contain all the non-sample information.

3.2 Incorporating Sample Information

We incorporate the sample information into our GME estimator of the strategies,αi,

by maximizing the entropy ofαi subject to the moment or consistency conditions that contain

sample information. We can use either of two approaches (as GJP shows). If we require that

the moment restrictions hold exactly, we derive a ME estimator, which is identical to the ML

multinomial logit estimator (when the ML estimate is unique). If we view the moment condi-

tions as stochastic restrictions, we obtain a GME estimator, which is a generalization of the

multinomial logit. With either the ME or GME approaches, we obtain estimates of the

probabilitiesαi as a function of the public information,z.

In our problem, there aren actions, which are price-advertising pairs. The variableyi
tr

equals one in periodt if action r is observed and zero otherwise. The variableyi
tr is a

function of the public information:

(3.2) y
i

t r G(z
t

ζ i
r
) e

i
tr αi

t r e
i

t r ,

for i = 1, 2, whereyi
tr andzt are observed andαi

tr, ei
tr, andζi

r are unknown parameters to be

estimated.

By eliminatingei from Equation 3.2 and assuming thatG(·) is a known cdf such as the

logistic or the normal, we can estimate this model using maximum likelihood multinomial

logit or probit. To avoid having to assume a specific cdf, we follow GJP and relate the set of

covariateszt to the datayi
tr and the unknownαi

tr andei
tr. We multiply Equation (3.2) by each
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covariate variable,ztl, and sum over observations to obtain the stochastic sample-moment

(data consistency) restrictions:

(3.3)
t

y
i

t r zt l
t

αi
t r zt l

t
e

i
t r zt l ,

for l = 1, ...,L, which is the number of covariates inz, andr = 1, ...,n. We obtain the basic

GME estimator by maximizing the sum of the entropy corresponding to the strategy probabili-

ties, αi, and the entropy from the noise,ei, subject to that data consistency condition (3.3).

As we discussed in Section 3.1, the arguments of the Shannon’s entropy measures

must be probabilities. The elements ofαi are probabilities, but the elements ofei range over

the interval [-1, 1]. To determine the entropy ofei, we reparameterize its elements using

probabilities. We start by choosing a set of discrete points, called the support space,vi =

[vi
1, vi

2, ..., v i
M]’ of dimensionM ≥ 2, that are at uniform intervals, symmetric around zero,

and span the interval [ , ], whereT is the number of observations in the sample.1/ T 1/ T

Each error termei
r has corresponding unknown weights wi

r = [wi
r1, wi

r2, ..., wi
rM]’ that have the

properties of probabilities: 0≤ wi
rm ≤ 1 andΣm wi

rm = 1.

We rewrite each error element asei
r ≡ Σm v i

mwi
rm. For example, ifM = 3, thenvi =

( , 0, )’, and there existswi
1, wi

2, andwi
3 such that each noise component can be1/ T 1/ T

written asei
r = . Using this parameterization, we represent the GMEw

i
r 1/ T w

i
r 3/ T

consistency conditions, Equation 3.3, as
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(3.4) t
y

i
t r zt l

t
αi

t r zt l
t

e
i

t r zt l

t
αi

t r zt l
t m

w
i

trm v
i

m z
i

t l .

For notational simplicity, we now drop the firm superscript. If we assume that the

actions,x, and the errors,e, are independent and definew as the vector which contains the

elementswtrm, the GME problem for each firm is

(3.5) max
α, w

H α , w α′ ln α w′ ln w,

subject to the GME consistency conditions, Equation 3.4, and the normalization constraints

(3.6) 1 α
t

1,

(3.7) 1 w
ts

1.

for s = 1, 2, …,n and t = 1, 2, …,T. GJP shows how to estimate this model and demon-

strates that the GME problem can be viewed as a generalized logit likelihood function, which

includes the traditional logit as a special case.

Henceforth we refer to the GME estimator that uses only sample information as "the

GME" estimator. When using the GME estimator, we may estimateαi andαj separately.

3.3 Incorporating the Non-Sample (Game-Theoretic) Information

We obtain the "GME-Nash" estimator by adding the game-theoretic restrictions, Equa-

tions 2.3 and 2.4, to the GME estimator. The GME-Nash estimator, and its application to
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data, comprise the contributions of the current paper. To explain how to implement this

estimator, we first proceed as if we knew the parameters of the profit function,πi
rs. This

assumption allows us to concentrate on the game-theoretic restrictions. We then consider the

more realistic case where we need to estimate the parameters of the profit function.

To use the GME-Nash estimator, we need to estimateαi andαj jointly because both

strategy vectors appear in Equation 2.4. [In contrast, as we noted above, the stategies can be

estimated separately when using the GME estimator.] Further, we also have to estimateδi(z),

i = 1, 2, from Equation 2.4. As we discussed in Section 2.2,δi(z) is nonzero if the econome-

trician does not observe firms’ private information or if firms make mistakes in optimization.

Our first step is to reparameterizeδi(z) using probabilities. Letva be a vector of

dimensionJ a ≥ 2 with corresponding unknown weightsωa
r such that

(3.8)
j

ωa
r j 1,

(3.9) v a ωa
r

ar ,

for a = δ1, δ2. The support spaces va are defined to be symmetric around zero for allar.
3

Let

y = (yi´, yj´)´, α = (αi´, αj´)´, w = (wi´, wj´)´, and ω (ωδi
, ωδ j

) ′.

3 We do not have natural boundaries forδi, so we use the "three-sigma rule"
(Pukelsheim, 1994; Miller 1994; Golan, Judge, and Miller 1996) to choose the limits of these
support spaces, where sigma is the larger of the empirical standard deviation of the discrete
action space of prices or advertising.
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As above, we assume independence between the actions and the errors. The GME-Nash

problem is

(3.10) Max
α, w, ω

H α, w, ω α′ ln α w′ ln w ω ln ω

subject to the data consistency conditions 3.4 for each firm, the necessary economic condi-

tions 2.3 and 2.4 for each firm, and the adding-up conditions forα, w, andω. The termsδi
r

in Equation 2.4 are defined by Equations 3.8 and 3.9. Solving the problem (3.10) yields the

estimatesα̃, w̃, andω̃.

In order to write the Lagrangean for this problem, we need to determine how to

impose the game-theoretic restrictions. Ideally, we would require that the game-theoretic

restrictions hold for all possible values ofz. We cannot impose these restrictions for all

values because we cannot writeα(z) in closed form independent of the unknown Lagrangean

multipliers. Instead, we impose the weaker condition that the game-theoretic restrictions,

Equations 2.3 and 2.4, hold at some or all of the values ofz in our sample. Because of the

large number of restrictions for each value ofz in our application, we impose the restrictions

for only a subset of the observations. These restrictions, however, affect theα for all

observations through the Lagrangean multipliers corresponding to the sample information (the

moment conditions Equation 3.2).

We now turn to the more realistic case where we do not know the parameters of the

profit functions. We simultaneously estimate the strategies and the parameters of the profit

function, which depends on the demand and cost functions. We do not have observations on

cost, but we observe Firmi’s output,qi, and some factor-cost (wages, price of sugar, and
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interest rate) variables,zc. We assume that Firmi’s cost is given by a cost functionCi(qi, zc;

ηi), whereηi are parameters. Similarly, we assume that the demand for Firmi’s product is

qi(xi, xj, zd; φi), wherezd are demand shifters (income and a seasonal dummy) andφi are

parameters. We substitute these functions in the Constraints 2.3 and 2.4 and estimateηi and

φi jointly with the other parameters.

Because we observe demand (but not cost) we have an additional set of data consis-

tency (sample) restrictions in the form of demand equations for each Firmi,

qi = qi(xi, xj, zd; φi) + ui,

whereui is an error term. We estimate the parametersφi andηi using the same method

described in the previous subsection for estimating parameters that are not probabilities.4

That is, we choose a support for each such parameter and estimate the probability distribution

over that support. We perform this estimation by maximizing the sum of all the entropy

measure in equation 3.10 plus the entropy associated with the unknown demand and cost

parameters.

3.4 Properties of the Estimators and Normalized Entropy

Both the GME and GME-Nash estimators are consistent, but they differ in efficiency

and information content. GJP shows that the GME estimator is consistent given an appropri-

ate choice of the bounds of the error term in the data consistency constraint 3.4. Under the

assumption that a solution to the GME-Nash estimation problem exists for all samples,

Appendix 1 shows that the GME-Nash estimator is consistent.

4 A formal derivation is available from the authors.
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GJP show that the GME estimates ofα have smaller variances than the ME-ML

multinomial logit estimates. The possible solution space for the GME-Nash estimate ofα is a

subset of the solution space of the GME estimate ofα. Thus, we conjecture that the GME-

Nash estimator has a smaller variance than the GME.5

We can quantify the added information contained in the game-theoretic restrictions by

comparing the normalized entropy ofα with and without the restrictions. The normalized

entropy measure isS(α) = -(Σr αr ln αr)/(ln n). The normalized entropy measure isS(α) = 1

if all outcomes are equally likely, and isS(α) = 0 if we know which action will be taken with

certainty. The magnitude of the change in normalized entropy from imposing the game-

theoretic restrictions provides a measure of the information they contain. See Soofi (1992)

and Appendix 1 for a derivation of the properties and inferences results for this estimator.

4. COLAS

Using quarterly data for 1968-1986, we estimate the price and advertising strategies

for Coca-Cola and Pepsi-Cola using the GME and GME-Nash approaches. The Coca Cola

Company and Pepsico, Inc. dominate the cola and soft-drink markets.6 We use quarterly

data for 1968-86, which were obtained from a variety of secondary sources and are described

in Gasmi (1988), Gasmi and Vuong (1991), and Gasmi, Laffont, and Vuong (1992).7

5 Monte Carlo sampling experiment that support this conjecture are available from the
authors.

6 In 1981 for example, Coca-Cola’s share of colas was 44.4% and its share of the
national carbonated soft-drink market was 27.8% (according to theBeverage Industry Annual
for 1986). The corresponding shares for Pepsi were 34.6% and 21.6%.

7 The data were generously provided by these authors. We especially thank Farid Gasmi
for patiently describing the data and making suggestions about the specification of our model.
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We assume that firms set prices and advertising and use the demand specification from

these earlier studies:

(4.1) q
i

t φi
0 φi

1 p
i

t φ i
2 p

j
t φ i

3 (A i
t )½ φ i

4 (A j
t )½ φ i

5 d φ i
6 I u i ,

wherei = 1, 2, i ≠ j; qi is the quantity sold,pi is the real price charged, andAi is the real

advertising by Firmi; d is a seasonal dummy;I is income;ui is an error term;φ i
1 is negative;

φ i
2 andφ i

3 are positive. We reparameterize 4.1 so that it can be estimated along with the other

parameters in the GME-Nash model. We assume that the marginal and average cost of Firm

i is ci = η i
0 + η i

1 × real price of sugar +η i
2 × real unit cost of labor in the nondurable

manufacturing sector +η i
3 × real yield on a Moody’s AAA corporate bond, whereη0, η1, η2,

η3 ≥ 0.8

Both Gasmi, Laffont, and Vuong and we chose a demand curve that does not include

lagged values of decision variables (prices and advertising) or lagged functions of those

variables (lagged quantity). This restrictive functional form is necessary given our economic

model in which firms play a repeated (static) game and both price and advertising are deci-

sion variables. Were the demand curve to depend on lagged values of decision variables,

firms would realize that choices today influence profits in the future and hence would not act

as though they were playing a repeated static game.

It would be possible to alter our model to allow for lagged advertising by assuming

that the firms’ only decision variable is price and that advertising is only a demand shifter

8 The earlier studies did not include a constant term. Moreover, some of them used
separate interest rates for the two companies. Because the correlation between these two
interest rate measures is 0.99, we use only one.
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(like income). Though this approach would lead to a much simpler estimation problem than

the one we examine, we do not believe that it is reasonable to view advertising as anything

but a decision variable.

Another approach we could have taken would be to include lagged sales (arguing that

consumers develop brand loyalties) and then estimated a dynamic oligopoly model. There

have been a number of efforts to estimate dynamic models of this sort, including Erickson

(1992), Karp and Perloff (1989) and Roberts and Samuelson (1988). Erickson, for example,

estimates a game in which Coke and Pepsi’s current market share depends on the lagged

market share in addition to current advertising, so that a stock effect exists. In principle our

estimation methods can be applied to dynamic games, although the problem becomes difficult

due to data and computational limitations.

4.1 Cola Estimates

For both the GME and GME-Nash models, firms have 35 possible actions in each

period.9 We divide the range of possible prices into seven intervals and the range of

possible advertising levels into five intervals.10

9 If we reduce the number of possible actions, we estimate strategies distributions that
are always single peaked (unlike the results reported below where Pepsi has double-peaked
mixed strategies). This smoothing effect is the standard result from reducing the number of
categories in a histogram. Smoothing aside, our estimates did not vary greatly as we
experimented with other action spaces. For example, the strategy mode still occurs at the
same area of price-advertising space.

10 Within the sample, the prices range between $10.886 and $17.790 for Coca-Cola and
between $6.646 and $9.521 for Pepsi-Cola. This difference in price levels is apparently due
to the greater use of Coke syrup at fountains. Advertising expenditures range between 5.726
and 71.966 for Coca-Cola and from 7.058 to 50.814 for Pepsi-Cola.
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To estimate the GME-Nash model, we impose sign restrictions from economic theory

on both the cost (all cost coefficients are non-negative) and demand parameters (demand falls

with a firm’s own price and rises with the other firm’s price and its own advertising) and the

game-theoretic restrictions in 15 periods (every fifth quarter starting with the third quarter).

By only imposing the restrictions in about one-fifth of the periods, we greatly reduce the size

of the estimation problem.11

The Coca-Cola demand coefficients areφ0 = 4.549,φ1= -1.079,φ2 = 2.137,φ3 =

0.741,φ4 = -0.232,φ5 = 7.730,φ6 = 0.737. The corresponding demand coefficients for Pepsi-

Cola are -20.021, -1.596, 0.582, 0.808, -0.211, 5.592, and 2.056. The correlation coefficients

between observed quantities and those predicted by the demand equation are 0.93 for Coke

and 0.94 for Pepsi.

For the GME-Nash, the estimated cost parameters areη0 = 13.482,η1 = η2 = 0 (due

to the theoretical restriction that the coefficient be non-negative), andη3 = 0.208 for Coca-

Cola. The corresponding cost coefficients for Pepsi-Cola are 7.251, 0, 0, and 0.

Table 1 shows the GME estimates of Coca-Cola’s coefficients on the exogenous

variables,z.12 From the estimated coefficients, we can calculate the strategy probabilities,

11 We examined the sensitivity of our results to this assumption. We compared the
estimate here where we imposed the theoretical restrictions on every fifth period (the
frequency) starting with the third quarter to one with the same frequency where we started
with the second or fourth quarter and found that the results were virtually identical. We also
found that our estimates were not very sensitive to reducing the frequency.

12 To save space, we do not report the coefficients for Pepsi or the two tables for the
GME-Nash. These tables are available from the authors. Due to an arbitary normalization
convention, the GME (and GME-Nash) estimates have the opposite sign of the coefficients
that would be produced by the roughly comparable ML multinomial logit approach.
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α, for each period. We show the estimates for the first quarter of 1977, near the midpoint of

the sample, for Coca-Cola in Figure 1 and Pepsi-Cola in Figure 2. In both figures, panel a

shows the GME estimates and panel b shows the GME-Nash estimates.

For both companies, the GME probability estimates are more uniform (reflect greater

entropy) than the GME-Nash estimates. These figures illustrate that the game-theoretic condi-

tions contain additional information beyond that in the data alone. If this theoretical

information is true, it improves our estimates.

The corresponding marginal distributions for price and advertising strategies for both

the GME and GME-Nash models are shown in Figure 3 for Coke and in Figure 4 for Pepsi.

The GME-Nash marginal distributions put more weight on the category with the largest

probability than do the GME marginal distributions.

This pattern is repeated in virtually all periods. We can compare the different

estimators empirically using the normalized entropy (information) measureS(α). The

normalized entropy measures for the GME, 0.66 (Coke) and 0.73 (Pepsi), are closer to one

(the upper bound of entropy) than are the corresponding GME-Nash measures, 0.31 and 0.41.

These numbers show the extent to which the game theoretic restrictions bind: They measure

the amount of additional information contained in the restrictions. Similarly, the pseudo-R2,

which is the expected value of 1 -S(·) for both firms (see Appendix 1), is 0.31 for the GME

model and 0.64 for the GME-Nash model.

The GME-Nash model is flexible enough to allow for both pure and mixed strategies.

Out of the 76 periods of the sample, there are three periods for each firm where it uses a pure

strategy.
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4.2 Tests

We now test whether our theory is consistent with the firms’ behavior (data), using a

variety of tests (see Appendix 1, Kullback, 1959, and Gokhale and Kullback, 1978). The

entropy-ratio test statistic (which is analogous to the likelihood-ratio test from classical

statistics) is [2H(GME) - 2H(GME-Nash)] = 359.38 <χ2
1050, 0.01, whereH(·) is the optimal

value of the objective function. Thus, we conclude that the economic theory represented by

the set of conditions (2.3) and (2.4) isconsistentwith the data.

We now compare the strategies (estimatedα) of the GME and the GME-Nash models

using first cross-entropyχ2 tests (Appendix 1) and then Kolmogorov-Smirnov (KS) tests.13

On the basis of a cross-entropyχ2 test, we reject the null hypothesis that the GME and GME-

Nash estimated strategies are identical in 34 periods (out of the 76 total periods) for Coke and

in 25 periods for Pepsi. Thus, we conclude that the profit-maximizing, Nash restrictions are

consistent with the data and contain useful information, so that imposing these restrictions

affects our estimates of the strategies.

Next, we compare the strategies of the two firms for the GME-NASH model. We

reject the null hypothesis that the two sets estimated strategies are identical in 74 out of the

76 periods. That is, the firms usedifferentstrategies.

For example, by comparing Figures 1b and 2b, we see that Coke and Pepsi had very

different strategy distributions in the middle of the sample. Coke had a single-modal strategy

distribution with most weight on a moderate price-moderately intense advertising strategy,

13 These test results are for a 0.05 significance level. As there are seven support points
for the price strategy and five for the advertising strategy, there are (7 - 1) × (5 - 1) = 24
degrees of freedom.
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whereas Pepsi had a bimodal distribution with the most weight on a high price-intensive

advertising strategy.

We obtain similar results using the Kolmogorov-Smirnov (KS) test to examine

whether the estimated GME and GME-Nash distributions differ systematically. On the basis

of a KS test at a 5% significance level, we cannot reject the hypothesis that the GME and

GME-Nash distributions and marginal distributions, averaged over all periods, are identi-

cal.14 If, however, we examine the hypothesis that the distributions are the same period by

period, we can reject the hypothesis for Coke in 66 (out of 76) periods and for Pepsi in 62

periods.

Next, we investigate the significance of the individual covariates,l = income, price of

sugar, wage, and bond rate. That is, we test whether the estimated coefficient is zero (H0: zl

= 0) or nonzero (H1: zl ≠ 0). Theχ2 test-statistic values are 54.41, 34.38, 78.07, and 56.51

for income, price of sugar, wage, and bond rate respectively. As a result, we reject the null

hypothesis forall the covariates at theα = 0.01 level. Thus, though the factor prices do not

greatly affect the marginal costs of the firms, they do affect the strategies the firms use (see

Section 4.4).

These estimators fit the data reasonably well, as Table 2 shows for both the GME

model and for the GME-Nash model. For example, the GME-Nash estimator correctly

predicted which of the seven price categories Coke chose in 55% of the periods. Moreover,

14 The ML multinomial logit (or ME model) for the entire sample ignoringz is the same
as the empirical distribution (the frequencies) of the actions. We cannot reject the hypothesis
that that estimate is the same as the average of the GME and GME-Nash estimates based on
KS tests.
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the model missed by more than one category in only 11% of the periods (this fact is not

shown in the table). In this study, the GME predictions are in each case more accurate than

those of the GME-Nash: For example Coke’s price category is correctly predicted in 70% of

the periods by the GME model and only 55% by the GME-Nash.15

4.3 Lerner Measures

A standard measure of market power is the Lerner index, which is the percentage by

which price is set above marginal cost. Usually, the Lerner index ranges between zero

(competition) and one.

We use our estimates of probabilities to calculate the expected Lerner index,

E[(pi - ci)/pi] = Σr αi
r[(p

i
r - ci)/pi

r], whereci is our estimate of Firmi’s marginal cost.16 We

suppress the dependence of all functions on the public information,z, and holdz constant for

purposes of this discussion. In our study, the average adjusted Lerner index is 0.24 for Coke

and 0.27 for Pepsi.

For comparison, we also calculated the Lerner index for the Bertrand-Nash model

using the coefficients from Model 1 of Gasmi, Laffont, and Vuong (1992). Averaged over

the sample, the index for Coke is 0.42 and for Pepsi is 0.45. Thus, the GME-Nash estimates

15 Based on our Monte Carlo simulations (available from the authors), the GME-Nash
can predict better than the GME. If the GME-Nash restrictions are correct, we expect the
GME-Nash to have lower mean squared errors than the GME.

16 A formal derivation of the relevant equations is available from the authors.
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indicate that firms have less market power than do ML estimates of a Bertrand-Nash equilibrium.17

4.4 Effects of the Exogenous Variables

Using our estimated models, we can calculate the effect of a change in each of the

exogenousz variables on the strategy probabilities,α, using the same approach as is used

with logit and probit models. Table 3 shows the average strategy elasticities using the GME-

Nash estimates (the percentage change in expected action divided by the percentage change in

a z variable).18 Some of these elasticities are large in absolute value because the corre-

sponding probabilities are close to zero.

By inspection of Table 3, we see that an increase in income, which shifts out demand,

increases the probability that Coke, and to a lesser extent Pepsi, charge higher prices. The

elasticity of Coke’s expected price with respect to income is 0.154 and the corresponding

elasticity for Pepsi is 0.0013.

An increase in income (and demand) spreads a unit cost of advertising over a greater

volume of sales, so we expect higher income to shift the distribution for advertising to the

right. Pepsi’s advertising strategy does shift to the right, but for Coke more probability

17 These differences in the Lerner indexes are largely due to differences in the estimates
of costs. Our GME-Nash cost estimates are substantially higher than their ML-Bertrand
estimates.

18 First, we calculate the derivatives of probabilities and average them over the 59
periods where we do not impose the game-theoretic constraints. Then, we average the
probabilities for these periods. Using these averages, we summed over categories to compute
the marginals of the averages, and used the results to calculate the elasticities of the margin-
als. By using the periods where we do not impose the constraints, we are able to use an
explicit formula for probabilities when calculating the derivatives. Had we used the periods
where the game theoretic constraints are imposed, we would have had to calculate the
derivatives of a system of 70 implicit equations.
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weight is shifted to both tails. The elasticity of expected advertising with respect to income

is -0.097 for Coke and 0.03 for Pepsi.

We can calculate similar elasticities with respect to the other exogenous variables.

According to our estimates, the corporate bond rate does not directly affect Pepsi’s costs, and

it has a negligible effect on Pepsi’s strategy. Despite the absence of a direct effect (via

costs), the bond rate might indirectly affect Pepsi’s strategy, possibly because Pepsi thinks

that it alters Coke’s strategy. Coke’s costs increase with the interest rate. For Coke, an

increase in the interest rate changes the mix of probabilities of charging a high price. An

increase in the interest rate shifts more weight to the tails of Coke’s advertising strategy. The

elasticities with respect to the corporate bond rate are 0.004 for Coke’s expected price, 0.032

for Coke’s expected advertising, 0.004 for Pepsi’s expected price, and 0.0005 for Pepsi’s

expected advertising. Thus, for changes in either income or bond rates, Coke responds more

than does Pepsi.

5. CONCLUSIONS

We developed two methods of estimating the strategies of firms, which are the

probabilities of taking particular actions. In our application to the cola market, the actions are

price-advertising pairs. Both methods are free of parametric assumptions about distributions

and ad hoc specifications such as those used in conjectural-variations models. Unlike

previous studies of oligopoly behavior that only allowed for pure strategies, we allow for both

pure and mixed strategies.

Our simplest approach is to use generalized maximum entropy (GME) to estimate the

strategies for each firm using only sample information. This method is more flexible and
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efficient than the standard maximum likelihood multinomial logit (ML) estimator. Both the

traditional ML and the GME estimators ignore restrictions imposed by economic theory and

some information about demand and costs.

Our generalized-maximum-entropy-Nash (GME-Nash) approach estimates firms’

strategies consistent with the underlying data generation process and the restrictions implied

by game theory. The application to the cola market demonstrates that both the GME and

GME-Nash models can be used practically.

Tests show that the profit-maximizing, Nash restrictions are consistent with the data

but that, because they contain information, alter our estimates of firms’ strategies. We are

able to use our estimates to show how changes in exogenous variables such as income or

factor prices affect the firms’ strategies.

Our GME and GME-Nash approaches to estimating games can be applied to many

problems in addition to oligopoly, such as wars and joint decisions by husbands and wives.

To do so only requires replacing profits with an appropriate alternative criterion.
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Appendix 1: The GME-Nash Estimator

A2.1 Consistency

Call the GME-Nash estimates of the strategiesα̃, the GME estimatesᾰ, and the ME-

ML estimatesα̂. We make the following assumptions:

Assumption 1: A solution of the GME-Nash estimator (α̃, w̃, ω̃) exists for any

sample size.

Assumption 2: The expected value of each error term is zero, its variance is

finite, and the error distribution satisfies the Lindberg condition (Davidson and

MacKinnon, 1993, p. 135).

Assumption 3: The true value of each unknown parameter is in the interior of

its support.

We want to prove

Proposition: Given assumptions 1-3, and lettingall the end points of the error

support spaces v(for each firm) be normed by , plim(α̃) = plim(ᾰ) = α.T

This result holds even when the profit parameters are unknown.

According to this proposition, the GME-Nash estimates,α̃, and the GME basic estimates,ᾰ,

are equal to each other and to the true strategies in the limit as the sample size becomes

infinite, T → ∞. That is, all the estimators are consistent.
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Proof:

i) The consistency of the GME estimator is proved in GJP. Let the end points of the

error supports ofv, v1 andvm, be - and respectively. AsT → ∞, ψs → 1 for1 / T 1 / T

all s in the dual-GME, Equation 3.12. Thus,Σs ln ψs(λ) → 0 and plimᾰT = α.

ii) The GME-Nash with known profit parameters is consistent: By Assumption 1,

after we have added the restrictions 2.3 and 2.4, we still have a solution. The argument in (i)

together with Assumption 2 implies that plimα̃T = α.

iii) The GME-Nash with unknown profit parameters is consistent. Given Assumption

3, the GME is a consistent estimator ofφ in Equation A1.1 (Mittelhammer and Cardell,

1996): plim φ̃T = φ. By the argument in (ii), plimα̃T = α. These asymptotic properties can

also be established via the empirical likelihood approach (Owen, 1990; Qin and Lawless,

1994; Golan and Judge, 1996).

A2.2 Hypothesis testing

On the basis of the consistency of the estimators, we can define an "entropy ratio

statistic" which has a limitingχ2 distribution (see Kullback, 1959, Gokhale and Kullback,

1978, and Soofi, 1992). We use this statistic to test hypotheses. In general, letλ* be the

vector of Lagrange multiplies forall the model’s constraints. LetHM(λ*0) be the entropy

value of the constrained problem whereλ* = 0, or equivalently all the parameters (strategies

as well as demand coefficients) are constrained to be zero (or at thecenterof their supports).

Thus,HM(λ*0) is the maximum value of the joint entropies (objective function). It can be

obtained by maximizing Equation (3.11)subject to no constraints (except for the requirement

that all distributions are proper). Doing so yields the total entropy value of the three sets of
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discrete, uniform distributionsα, w, andω. Now, let Hu(λ̃*) be the objective (total entropy)

value for the full GME-Nash model — the optimal value of Equation (3.14) — whereλ* is

the set of estimated values (that is, they are not forced to equal zero).

The entropy-ratio statisticfor testing the null hypothesisH0 that all parameters are

zero is

(parameters 0) 2HM (parameters 0) 2Hu(α̃ , w̃, ω̃ ) .

Under the mild assumptions we made above (or the assumptions of Owen, 1990 and Qin and

Lawless, 1994), asT → ∞ when H0 is true andK is the number(parameters 0) → χ2
K

of restrictions. The approximateα-level confidence intervals for the estimates are obtained

by setting , whereCα is chosen so that Pr(χ2
K < Cα) = α. Similarly, we can test( ) ≤ Cα

any other hypothesis of the formH0: α = α0 for all, or any subset, of the parameters. We

use these entropy-ratio statistics to test whether the economic and Nash restrictions are

consistent with the data.

Using the same line of reasoning as above (each constraint, or data point, represents

additional potential information that may lower the value of the objective function but can

never increase it), one can derive a "goodness of fit" measure for our estimator:
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R 1
Hu(λ̃ )

HM (λ̃ 0)
,

whereR* = 0 implies no informational value of the data set, andR* = 1 implies perfect

certainty or perfect in-sample prediction. This measure,R* , is the same as the information

index in Soofi, 1992.

The small-sample approximated variances can be computed in a number of ways. We

discuss two simplest approaches here. First, for each equation (say the two sets of demand

equations), we calculate

σ̂2
i

1
T t

ũ
2
it ,

where and for each parameterφ i
k. Similarly, for eachũi t ≡

j
ω̃u

t j v
u

j vâr (φi
k) ≅ σ̃2

i (X X ) 1

set of equations, the relevantσ2 is estimated.

Because our model is a system of a large number of equations, the elements of the

asymptotic variance-covariance matrix,Ω, for the error terms of the entire system are

estimated in the traditional way, taking into account all the data and all the restrictions

(Equations 2.3, 2.5, 2.6, and A.6).
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Finally, we note the relationship between the entropy objective and theχ2 statistic.

This relationship is used for comparison of various estimated strategies and various estimated

distribution. The cross-entropy measures is defined as

(2.1) I (α , α o)
k

αk ln (αk/α
o
k ) ,

whereαo is a proper prior probability distribution. Now, let {αk} be a set ofK observed

frequencies (strategies) over a set ofK observed prices. Let the null hypothesis beH0: α =

αo, then

χ2
(k 1)

k

1

αo
k

(αk αo
k )2.

A second-order approximation of (A2.1) is

I (α , α o) ≅ 1
2 k

1

αo
k

(αk αo
k )2 ,

which is the entropy-ratio statistic (for evaluatingα̃ versusα̃o) that we previous discussed.

We conclude by noting that two times the entropy-ratio statistic corresponds (at the limit) to

χ2
(k-1).
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Table 1

GME Estimates of Coefficients for Coca-Cola

Price Advertising Constant

Seasonal

Dummy Income

Price

of Sugar Wage

Bond

Rate

1 2 -46.738 1.851 0.832 1.207 49.393 -0.077

1 3 -43.588 -1.188 0.822 0.295 49.534 -0.115

1 4 1.441 0.017 -0.013 -0.098 -0.955 0.002

1 5 1.428 0.017 -0.013 -0.098 -0.940 0.002

2 1 77.525 0.834 -1.384 -0.041 -90.107 -0.052

2 2 10.040 0.896 -0.274 0.823 -11.263 -0.275

2 3 -20.309 -1.695 0.586 1.785 11.465 -0.396

2 4 51.699 -0.287 -0.860 -0.441 -60.512 -0.277

2 5 33.840 -1.141 -0.769 -0.266 -30.543 -0.024

3 1 1.428 0.017 -0.013 -0.098 -0.940 0.002

3 2 9.887 1.542 -0.196 -0.841 -12.846 -0.021

3 3 -13.102 -0.128 0.203 1.646 7.332 0.109

3 4 -61.368 -1.401 1.070 2.526 65.273 0.420

3 5 -0.719 -0.671 -0.190 1.200 5.090 0.357

4 1 21.993 0.756 -0.262 -2.909 -23.202 -0.168

4 2 -19.817 2.187 0.354 -2.500 25.788 -0.034

4 3 -5.802 0.697 -0.110 -0.903 11.068 0.291

4 4 59.688 -1.339 -1.201 -2.096 -59.023 0.281



36

4 5 1.428 0.017 -0.013 -0.098 -0.941 0.002

5 1 1.441 0.017 -0.013 -0.098 -0.955 0.002

5 2 1.425 0.017 -0.013 -0.098 -0.938 0.002

5 3 -22.607 -1.331 0.543 -0.379 23.203 -0.110

5 4 1.452 0.017 -0.013 -0.099 -0.966 0.002

5 5 1.462 0.017 -0.014 -0.099 -0.977 0.002

6 1 1.433 0.017 -0.013 -0.098 -0.947 0.002

6 2 1.438 0.017 -0.013 -0.098 -0.952 0.002

6 3 1.418 0.017 -0.013 -0.098 -0.930 0.002

6 4 -23.977 -1.188 0.479 0.901 24.449 0.037

6 5 1.453 0.017 -0.013 -0.099 -0.968 0.002

7 1 1.420 0.017 -0.013 -0.098 -0.932 0.002

7 2 -29.797 1.311 0.546 1.344 29.438 0.026

7 3 1.453 0.017 -0.013 -0.099 -0.968 0.002

7 4 1.418 0.017 -0.013 -0.098 -0.930 0.002

7 5 1.457 0.017 -0.013 -0.099 -0.972 0.002

Notes: The first two columns show the price and advertising categories. The coefficients in

the missing first row are normalized to zero.



37

Table 2: Percent of Categories Correctly Predicted

GME GME-Nash

Price Advertising Price Advertising

Coke 70 68 55 63

Pepsi 61 33 54 32
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Table 3: Strategy Elasticities

Categories

1 2 3 4 5 6 7

Interest Rate

Coke Price .000 .000 .000 .001 -2.920 2.998 -.192

Pepsi Price .000 .000 -.003 .003 .000 .000 .000

Coke Advertising .262 .000 -.005 -1.266 3.767

Pepsi Advertising -.004 .000 .000 .000 .003

Income

Coke Price .000 .000 -.000 .015 -87.737 64.180 15.077

Pepsi Price .000 .000 -.165 .204 .000 .001 .000

Coke Advertising 10.825 .000 .635 -32.756 75.448

Pepsi Advertising -.265 .000 .000 .000 .155
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Figure 1a: GME Estimates of Coke’s Strategies (First Quarter 1977)
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Figure 1b: GME-Nash Estimates of Coke’s Strategies (First Quarter 1977)
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Figure 2a: GME Estimates of Pepsi’s Strategies (First Quarter 1977)
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Figure 2b: GME-Nash Estimates of Pepsi’s Strategies (First Quarter 1977)



43

Figure 3: GME and GME-Nash Marginal Strategy Distributions for Coke (First Quarter 1977)

a) Pricing Strategies b) Advertising Strategies
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Figure 4: GME and GME-Nash Marginal Strategy Distributions for Pepsi (First Quarter 1977)

a) Pricing Strategies b) Advertising Strategies


