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1.  Introduction 
 
Information and Entropy Econometrics (IEE) is research that directly or indirectly builds 

on the foundations of Information Theory (IT) and the principle of Maximum Entropy 

(ME). IEE includes research dealing with statistical inference of economic problems 

given incomplete knowledge or data, as well as research dealing with the analysis, 

diagnostics and statistical properties of information measures. By understanding the 

evolution of ME, we can shed some light on the roots of IEE.   

 The development of ME occurred via two lines of research: 

 
i) The 18th century work (principle of insufficient reason) of Jakob Bernoulli 

(published eight years after his death, 1713)1, Bayes (1763) and Laplace (1774): 
They all investigated the basic problem of calculating the state of a system based on 
a limited number of expectation values (moments) represented by the data. This 
work was later generalized by Jeffreys (1939) and Cox (1946).  This line of 
research is known as Statistical Inference.   

 
ii) The 19th century work of Maxwell (1859, 1876) and Boltzmann (1871), continued 

by Gibbs (1902) and Shannon (1948):  This work is geared toward developing the 
mathematical tools for statistical modeling of problems in mechanics, physics and 
information. 

 
 The two independent lines of research are similar.  The objective of the first line 

of research is to formulate a theory/methodology that allows understanding of the general 

characteristics (distribution) of a system from partial and incomplete information.  In the 

                                                             
* Corresponding author. Tel.: 001-202-885-3783; Fax: 001-202-885-3790. 
E-mail address: agolan@american.edu (A.Golan) 
 
1 Note that Jakob Bernoulli is also known as Jacque and James Bernoulli. 
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second line of research, this same objective is expressed as determining how to assign 

(initial) numerical values of probabilities when only some (theoretical) limited global 

quantities of the investigated system are known.  Recognizing the common basic 

objectives of these two lines of research aided Jaynes (1957) in the development of his 

classical work, the Maximum Entropy (ME) formalism.   The ME formalism is based on 

the philosophy of the first line of research (Bernoulli, Bayes, Laplace, Jeffreys, Cox) and 

the mathematics of the second line of research (Maxwell, Boltzmann, Gibbs, Shannon). 

 The interrelationship between Information Theory (IT), statistics and inference, 

and the ME principle started to become clear in the early work of Kullback, Leibler and 

Lindley.  Building on the basic concepts and properties of IT,  Kullback and Leibler 

developed some of the fundamental statistics, such as sufficiency and efficiency as well 

as a generalization of the Cramer-Rao inequality, and thus were able to unify 

heterogeneous statistical procedures via the concepts of IT (Kullback and Leibler 1951; 

Kullback 1954, 1959).  Lindley (1956), on the other hand, provided the interpretation that 

a statistical sample could be viewed as a noisy channel (Shannon’s terminology) that 

conveys a message about a parameter (or a set of parameters) with a certain prior 

distribution.  In that way, he was able to apply Shannon’s ideas to statistical theory by 

referring to the information in an experiment rather than in a message.2 

 The interrelationship between Information Theory (IT), statistics and inference, 

and the ME principle may seem at first as coincidental and of interest only in a small 

number of specialized applications.  But, by now it is clear that when these methods are 

used in conjunction, they are useful for analyzing a wide variety of problems in most 

                                                                                                                                                                                     
 
2 For a nice detailed discussion see Soofi (1994). 
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disciplines of science.  Examples include (i) work on image reconstruction and spectral 

analysis in medicine, physics, chemistry, biology, topography, engineering, 

communication and information, operations research, political science and economics 

(e.g., brain scan, tomography, satellite images, search engines, political surveys, input-

output reconstruction and general matrix balancing), (ii) research in statistical inference 

and estimation, and (iii) ongoing innovations in information processing and IT.    

 The basic research objective of how to formulate a theory/methodology that 

allows understanding of the general characteristics (distribution) of a system from partial 

and incomplete information has generated a wide variety of theoretical and empirical 

research.  That objective may be couched in the terminology of statistical decision theory 

and inference in which we have to decide on the “best” way of reconstructing an image 

(or a “message” in Shannon’s work), making use of partial information about that image.  

Similarly, that objective may be couched within the more traditional terminology, where 

the basic question is how to recover the most conservative estimates of some unknown 

function from limited data.  The classical ME is designed to handle such questions and is 

commonly used as a method of estimating a probability distribution from an insufficient 

number of moments representing the only available information.   

 IEE is a natural continuation of IT and ME.  All of the studies in IEE (developed 

mostly during the 1990s) build on both IT and/or ME to better understand the data while 

abstracting away from distributional assumptions or assumptions on the likelihood 

function.  The outcome of these independent lines of study was a class of information-

based estimation rules that differ but are related to each other.  All of these types of 
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methods perform well and are quite applicable to large classes of problems in the natural 

sciences and social sciences in general, and in economics in particular. 

 The objectives of this volume are to gather a collection of articles from the wide 

spectrum of topics in IEE and to connect these papers and research together via its natural 

unified foundation: ME and IT.  To achieve these objectives, the papers in this volume 

include summaries, reviews, state of the art methods, as well as discussion of possible 

future research directions.   

2.  Brief Summary of Recent History 

2.1. Information and Entropy - Background 
 
Let A = { }M2,1 a...,a,a  be a finite set and p be a proper probability mass function on A.  

The amount of information needed to fully characterize all of the elements of this set 

consisting of M discrete elements is defined by ( ) MI M 2log=A  and is known as 

Hartley’s formula.  Shannon (1948) built on Hartley’s formula, within the context of 

communication process, to develop his information criterion.  His criterion, called 

entropy,3 is  

∑−≡ =
M
i ii ppH 1 log)( p      (2.1a)  

with xlog(x) tending to zero as x tends to zero.  This information criterion measures the 

uncertainty or informational content that is implied by p.  The entropy-uncertainty 

measure H(p) reaches a maximum when Mppp M /1...21 ==== (and is equal to 

Hartley’s formula) and a minimum with a point mass function.  It is emphasized here that 

                                                             
3 In completing his work, Shannon noted that “information” is already an overused term.  He approached 
his colleague John von Newman, who responded: “You should call it entropy for two reasons: first, the 
function is already in use in thermodynamics under the same name; second, and more importantly, most 
people don’t know what entropy really is, and if you use the word entropy in an argument you will win 
every time”. 



 5

H(p) is a function of the probability distribution.  For example, if ηη is a random variable 

with possible distinct realizations Mxxx ,...,, 21  with probabilities Mppp ,...,, 21 , the 

entropy H(p) does not depend on the values Mxxx ,...,, 21 of ηη.  Ιf, on the other hand, ηη is 

a continuous random variable, then the (differential) entropy of a continuous density is 

∫−≡ dxxpxpH )(log)()(X      (2.1b)  

where this differential entropy does not have all of the properties of the discrete entropy 

(2.1a).  For a further detailed and clear discussion of the entropy concept and of 

Information Theory see Cover and Thomas (1991) and Soofi (1994). 

 After Shannon introduced  this measure, a fundamental question arose: whose 

information does this measure capture?  Is it the information of the “sender”, the 

“receiver” or the communication channel?4  To try and answer this question, let us first 

suppose that H measures the state of ignorance of the receiver that is reduced by the 

receipt of the message.  But this seemingly natural interpretation contradicts Shannon’s 

idea.  He used H to measure the overall capacity required in a channel to transmit a 

certain message at a given rate.  Therefore, H is free of the receiver’s level of ignorance.  

So what does it measure?  

 One answer to this question is that H is a measure of the amo unt of information in 

a message.  To measure information, one must abstract away from any form or content of 

the message itself.  For example, in the old-time telegraph office, where only the number 

of words were counted in calculating the price of a telegram, one’s objective was to 

minimize the number of words in a message while conveying all necessary information.  

                                                                                                                                                                                     
 
4 Within the context of IT, “channel” means any process capable of transmitting information. 
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Likewise, the information in a message can be expressed as the number of signs (or 

distinct symbols) necessary to express that message in the most concise and efficient 

way.  Any system of signs can be used, but the most reasonable one is to express the 

amount of information by the number of signs necessary to express it by zeros and ones.  

In that way, messages and data can be compared by their informational content.  Each 

digit takes on the values 0 or 1, and the information specifying which of these two 

possibilities occurred is called a unit of information.  The answer to a question that can 

only be answered by “yes” and no” contains exactly one unit of information regardless of 

the meaning of that question.  This unit of information is called a “bit” or binary digit.5  

Further, Renyi (1961, 1970) showed that, for a (sufficiently often) repeated experiment, 

one needs on average the amount H(p)+ε of zero-one symbols (for any positive ε) in 

order to characterize an outcome of that experiment.  Thus, it seems logical to claim that 

the outcome of an experiment contains the amount of information H(p). 

 The information discussed here is not “subjective” information of a particular 

researcher.  The information observed in a single observation, or a data set, is a certain 

quantity that is independent of whether the observer (e.g., an economist or a computer) 

recognizes it or not.  Thus, H(p) is a measure of the average amount of information 

provided by an outcome of a random drawing governed by p.  Similarly, H(p) is a 

measure of uncertainty about a specific possible outcome before observing it, which is 

equivalent to the amount of randomness represented by p. 

                                                                                                                                                                                     
 
5 Shannon’s realization that the binary digits could be used to represent words, sounds, images and ideas, is 
based on the work of George Boole, the 19th-century British mathematician, who invented the two-symbol 
logic in his work “The Laws of Thought.”  
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 According to both Shannon and Jaynes (1957), H measures the degree of 

ignorance of a communication engineer who designs the technical equipment of a 

communication channel because it takes into account the set of all possible messages to 

be transmitted over this channel during its life time.  In more common econometric 

terminology, we can think of H in the following way.  The researcher never knows the 

true underlying values characterizing an economic system.  Therefore, one may 

incorporate her/his understanding and knowledge of the system in constructing the image 

where this knowledge appears in terms of some global quantities, such as moments.  Out 

of all possible such images, where these moment conditions are retained, one should 

choose the image having the maximum level of entropy.  The entropy of the analyzed 

economic system is a measure of the ignorance of the researcher who knows only some 

moments' values representing the underlying population. For a more detailed discussion 

of the statistical meaning of information see Renyi (1970) and Soofi and Retzer (this 

volume). 

 If, in addition, some prior information q, defined on A, exists, the cross-entropy 

(or Kullback-Leibler, K-L, 1951) measure is ( )∑= =
M
i iii qppI 1 /log)( qp;  where a 

uniform q reduces I(p;q) to H(p).  This measure reflects the gain in information with 

respect to A resulting from the additional knowledge in p relative to q.  Like with H(p), 

I(p;q) is an information-theoretic distance of p from q.  For example, if Ben believes the 

random drawing is governed by q (for example, Mqi /1= for all i=1, 2, …, M) while 

Maureen knows the true probability p (which is different than uniform), then I(p;q) 

measures how much less informed Ben is relative to Maureen about the possible 

outcome.  Similarly, I(p;q)  measures the gain in information when Ben learns that 
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Maureen is correct – the true distribution is p, rather than q.  Phrased differently, I(p;q) 

may also represent loss of information such as Ben’s loss when he uses q.  For further 

discussion of this measure see Cover and Thomas (1991), Maasoumi (1993) and Soofi 

and Retzer (this volume). 

2.2. Maximum Entropy - Background 

Facing the fundamental question of drawing inferences from limited and insufficient data, 

Jaynes proposed the ME principle, which he viewed as a generalization of Bernoulli and 

Laplace’s Principle of Insufficient Reason.  Using the tools of the calculus of variations 

the classical ME is briefly summarized.6 

 Given T structural constraints in the form of moments of the data (distribution), 

Jaynes proposed the ME method, which is to maximize H(p) subject to the T structural 

constraints.  Thus, if we have partial information in the form of some moment conditions, 

tX  (t=1, 2, …, T) , where T<M, the ME principle prescribes choosing the )( iap  that 

maximizes H(p) subject to the given constraints (moments) of the problem. These 

constraints can be viewed as certain “conservation laws” or “moment conditions” that 

represent the available information.  His solution to this underdetermined problem is 









∑−∝
t

itti aXap )(ˆexp)(ˆ λ       (2.2) 

where λλ are the T Lagrange multipliers, and λλ̂  are the values of the optimal solution 

(estimated values) of λλ.  Naturally, if no constraints (data) are imposed, H(p) reaches its 

maximum value and the p's are distributed uniformly. 

Specifically, if the available information is in the form of 
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1=∑i ip  and ][)( tii ti gEXgp =∑ , t=1, 2, …, T,   (2.3) 

where E is the expectation operator and 1)(0 ≡iXg  for all i, then the least “informed” 

(prejudiced) proper distribution that obeys these T+1 restrictions is: 

 { }








∑−=−⋅⋅⋅−−−=
=

T

t
ittiTTii XgXgXgXgp

0
22110 )(ˆexp)(ˆ)(ˆ)(ˆˆexpˆ λλλλλ . (2.4) 

The entropy level is 

])([ˆˆ
1

0 ∑+=
=

T

t
it XgEH λλ .    (2.5) 

The partition function (known also as normalization factor or the potential function), 0λ , 

is defined as 









∑ 








∑−=
=i

T

t
itt Xg

1
0 )(ˆexplog λλ     (2.6) 

and the relationship between the Lagrange multipliers and the data is given by 

[ ]t
t

gE=
∂
∂

−
λ
λ0      (2.7) 

while the higher moments are captured by 

)(
2
0

2

t
t

gVar=
∂

∂

λ

λ
 and )(0

2

st
st

ggCov=
∂∂

∂
λλ

λ
.  (2.8) 

With that basic formulation, Jaynes was able to “resolve” the debate on 

probabilities vs. frequencies by defining the notion of probabilities via Shannon’s entropy 

measure.  His principle states that in any inference problem, the probabilities should be 

                                                                                                                                                                                     
6 ME is a standard variational problem.  See for example, Goldstine (1980) and Sagan (1993). 
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assigned by the ME principle, which maximizes the entropy subject to the requirement of 

proper probabilities and any other available information.7  

Prior knowledge can be incorporated into the ME framework by minimizing the 

cross-entropy, rather than maximizing the entropy, subject to the observed moments.  If 

p~ is the solution to such an optimization problem, then it can be shown 

that );~()~;();( ppppqp III +=  for any p satisfying the set of constraints (2.3), 

which is the analogous to the Pythagorean Theorem in Euclidean geometry, where I(p;q) 

can be regarded as the analogous for the squared Euclidean distance. 

 There exists an important interpretation of (2.4)-(2.6) within the context of Bayes 

theorem.  The exact connection between ME, information and Bayes theorem is 

developed in Zellner (1988), discussed in the various papers of Jaynes, and is generalized 

in this volume (Zellner, 2001).  

Finally, one cannot ignore two basic questions that keep coming up: Is the ME 

principle “too simple?” and does the ME principle “produce something from nothing?”  

The answer to the above is contained in the simple explanation that this principle uses 

only the relevant information, and eliminates all irrelevant details from the calculations 

by averaging over them. 

                                                             
7 In the fields of economics and econometrics, it was probably Davis (1941) who conducted the first work 
within the spirit of ME.  He conducted this work before the work of Shannon and Jaynes, and therefore he 
did not use the terminology of IT/ME.  In his work, he estimated the income distribution by (implicitly) 
maximizing the Stirling’s approximation of the multiplicity factor subject to some basic requirements/rules. 
A nice discussion of his work and of the earlier applications and empirical work in IEE in general and ME 
in particular in economics/econometrics appears in Zellner (1991) and Maasoumi (1993).  For recent 
theoretical and applied work see the papers and citations provided in the current volume.  
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2.3.  Information, Entropy and Maximum-Entropy Revisited 

Building on Shannon’s work, a number of generalized information measures were 

developed. Starting with the idea of describing the gain of information, Renyi (1961) 

developed the entropy of order α for incomplete random variables.8  The relevant 

generalized entropy measure of a proper probability distribution (Renyi, 1970) is 

∑
−

=
k

k
R pH α
α α

log
1

1
)( p .    (2.9) 

 
The Shannon measure is a special case of this measure where α → 1. Similarly, the 

(Renyi) cross entropy of order α is 

∑
−

==
−k k

kRR

q

p
II

1
log

1

1
)()(

α

α

αα α
q p,y|x ,   (2.10) 

which is equal to the traditional cross-entropy measure as α → 1. 

 Building on Renyi’s work, and independent of his work, a number of other 

generalizations were developed.  These generalizations include the less known Bergman 

distance and the f-entropy measures.  However, the commonly used generalized measures 

in IEE are those that were developed during the 1980’s by Cressie and Read (1984) and 

Tsallis (1988).  The cross-entropy version of the Tsallis measure is 














−∑

−
== − 1

1

1
)()(

1
k k

kTT

q

p
II α

α

αα α
q p,y|x ,    (2.11) 

and the commonly used Cressi-Read measure is 

                                                             
8 If ηη is an incomplete random variable with M distinct realizations, then ∑ ≤i ip 1 (rather than 

∑ =i ip 1 ) where ;0>ip  i=1, …, M. 
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












−








∑

+
== 1

)1(

1
)()(

α

αα αα k

k

k
k

CRCR

q

p
pII q p,y|x .  (2.12) 

Although it has not been recognized in the literature, we can show that all of these 

measures are connected. To do so, we compare the Tsallis and Renyi measures of order 

(α+1) with that of Cressi-Read of order α: 

)]()1(1log[
1

)](1log[
1

)( 11 q p,q p,q p, CRTR III ααα αα
α

α
α

++−=−−= ++  (2.13) 

where the traditional cross-entropy measure is a special case of the above for 0→α . 

(Since the other entropy measures are not of interest here, their connection with the above 

measures is not discussed here.)  All of the above measures are commonly known as α-

entropies.  For completeness, we note that the α-entropy is also known as “Chernoff 

entropy.”  Chernoff (1952) introduced this measure in his classical work on asymptotic 

efficiency of hypothesis tests.  Chernoff entropy is found by starting with (2.13), and 

letting α=1-β with 0<β<1.   For the basic properties of these measures see Golan and 

Perloff (this volume). 

All of the estimation methods within IEE are based on optimizing Eq. 2.13 for 

given values of α, subject to certain moment representation of the data, or certain 

“conservation laws” representing the underlying system.  This class of methods is led by 

the pioneering work in the Bayesian Method of Moments (BMOM), the Empirical 

Likelihood (EL), variations of the Generalized Method of Moments (GMM) and the 

Generalized ME (GME).  All of these methods share the same basic objective of 

analyzing limited and noisy data using minimal assumptions.   
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Specifically, econometricians are often faced with finite and non-experimental 

data sets that in most cases are ill behaved.  Further, as the underlying data generating 

process (or error margins) is uncertain or unknown, statisticians and econometricians try 

to avoid strong distributional assumptions or a pre-specified likelihood function.  With 

the above in mind, and within the general objective of estimation and inference for a 

large class of models (linear and nonlinear, parametric and non-parametric), it seems that 

going back to the foundations of IT and ME was quite inevitable and led to a whole class 

of information-theoretic methods.  All of these information-theoretic methods could be 

viewed as approaches to solving ill-posed or under-determined problems in the sense that 

without a pre-specified likelihood or distribution, there are always more unknowns than 

knowns regardless of the amount of data.  That is, since the observation matrix is 

irregular or ill-conditioned or since the number of unknowns exceeds the number of data 

points, the problem is ill-posed.  To solve these problems, one has to (i) incorporate some 

prior knowledge, or constraints, on the solution, or (ii) specify a certain criterion to 

choose among the infinitely many solutions, or (iii) use both approaches.  But what 

criterion and what constraints should one use?   

It seems natural to employ an informational criterion together with variations of 

the observed moments.  For example, Zellner (1997, p. 86) says, “The BMOM approach 

is particularly useful when there is difficulty in formulating an appropriate likelihood 

function. Without a likelihood function, it is not possible to pursue traditional likelihood 

and Bayesian approaches to estimation and testing.  Using a few simple assumptions, the 

BMOM approach permits calculation of post-data means, variances and other moments 

of parameters and future observations.” 
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In the BMOM approach, one starts by maximizing the continuous entropy 

function (the continuous version of Eq. 2.13 with 0→α ) subject to some T side 

conditions (pure conservation laws) and normalization.  This approach yields the average 

log-height of the density function, which is the least informative density given these side-

conditions.   

Similarly, under the EL objective, one starts by searching for the “natural” weight 

of each observation by maximizing Eq. 2.13 (with 1−→α ) subject to the exact moment 

restrictions and normalization.  Under the GME approach, one maximizes 2.13  (with 

0→α  and with respect to both signal and noise) but subject to noisy moment 

representation (noisy conservation laws).  Other examples include the class of 

regularization methods, which use the penalty function 2.13 for different levels of α (e.g., 

Donho et. al., 1992), or the class of models known as “quantified ME” (e.g., Skilling, 

1989).9  The solutions in all of these methods depend on the choice of α, and the 

moments’ representation, and all are derived as in the traditional ME approach.   

 Finally, there are two common and important ingredients in all of these 

information-theoretic methods.  First, they all are 100% efficient Information Processing 

Rules (IPR), in the sense defined by Zellner (1988).  A 100% efficient IPR is one that 

satisfies the “information conservation principle” where the input information equals the 

output information.  Thus, there is no loss of information in the inversion process.  The 

two components of the input information are the data density (or likelihood function in 

the more traditional approach) and the prior distribution/s. The two output information 

components are the post-data distributions and the relevant partition functions (or 

                                                             
9  A less well known class of ME-type methods that was developed for noisy data, known as the ME on the 
mean (and is related to the GME), is discussed in Gamboa and Gassiat (1997). 
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marginal probability distributions).  Using Eq. 2.13, it is possible to show that even 

though each one of these information-theoretic methods is 100% efficient, the amount of 

input information may change according to the choice of α as well as the conservation 

laws (moment specification) used.  These choices in turn affect the output information. 

 Second, the properties of all of these methods can be developed and compared via 

the theory of Large Deviations, LD.  LD deals primarily with the convergence rates of 

stochastic systems and is based on the earlier work of Cramer (published in 1938) and 

Chernoff (1952).  While the law of large numbers shows that certain probabilities 

converge to zero, LD theory is used to investigate the rate of convergence of these 

probabilities to zero.  For example, with (exponentially) bounded random variables, the 

rate at which probabilities converge to zero rises exponentially as the size of the sample 

increases.  These exponential decay rates are computed in terms of the entropy (or cross 

entropy) function and are different for each level of α in (2.13).  In most (regular) cases, 

the second derivative of )(1 q p;+αI evaluated at the mean is just the inverse of the 

variance (or the Fisher information matrix).  Therefore, comparing different rate 

functions, which are specified in terms of entropy functions, gives information about 

asymptoptics.  LD is often used in the areas of hypothesis testing (calculating the rate that 

the probability of making an error goes to zero), in fast simulation methods, and in 

comparing estimation methods on the basis of their convergence rate.  For a detailed 

discussion, see the classic text by Ellis (1985) and the early work of Csiszar (1984).  The 

non-iid case is developed in this volume by Kitamura and Stutzer. 
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2.4.  Information, Entropy, Complexity and Non-Linearity 

In addition to methods of estimation and inference within the above framework, there is a 

tight connection between IT, entropy, ME and analysis of complex and non-linear 

systems. In particular, versions of Eq. 2.13 are commonly used to investigate the linear 

and non-linear dependence among random variables.  Quantities such as the Lyapounov 

exponents (measuring the non-linearity of a system and whether the system is chaotic or 

not), fractal and multi-fractal dimensions and correlation dimensions are just a few 

examples.  All of these quantities describe the amount of information, or information 

decay, in a system and are used to investigate non-linear (dynamic) systems within 

parametric and non-parametric frameworks.  For example, take the mutual information 

(defined as the expected information in an outcome of a random draw from y about an 

outcome of a random draw from x) version of (2.13) for two discrete random variables x 

and y of dimension N, and for α=1: 

)]()([)()( 2222 x yx, y y x, RRRR HHHI −−≡ .   (2.14) 

This measure equals zero if and only if x and y are statistically independent, and it equals 

log (N) if and only if y=f(x), where f can be any linear or nonlinear function. In general, 

this type of measure is used for any value of α where α is directly related to the system’s 

(embedding) dimension, or where α is related to (multi) fractal dimension in a nonlinear-

chaotic system.  For more, see Soofi (1994), discussions by Maasoumi and Racine and by 

Ullah in this volume, as well as one of the many texts on non-linearities, entropy, and 

information. 
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3.  Information and Entropy Econometrics and This Volume  

The main areas discussed in this volume are information and information measures in 

general, the relationship of IT and Bayes, information-theoretic methods, and nonlinear 

and non-parametric methods.  The issues of model and variable selection enter many of 

these discussions.  However, as model and/or variable selection is an essential ingredient 

of all analysis done with random and incomplete data, and is commonly related to IT, it 

does appear directly or indirectly in almost all of the presented papers, and is not treated 

here as a specific area of research. 

As all research within IEE is based on the notion of entropy and information, it 

seems natural to open this volume with Soofi and Retzer’s comprehensive discussion of 

information measures.  In addition to reviewing statistical information and information 

indices, they develop a unified framework for these indices.  They start with the classical 

cross-entropy formulation and then discuss “optimal models” within the IT framework.  

The connection between the ME and ML is discussed as well and is extended to the GLS 

framework.  Detailed examples and empirical applications are provided.   

Zellner provides an illuminating discussion of information processing rules (IPR) 

and extends the notion of optimal such IPR rules that he developed in 1988 to dynamic 

optimal processing rules. These rules are 100% efficient, are derived by optimizing some 

information criterion, and, as is shown by Zellner, are naturally connected with Bayes’ 

theorem.   

With the objective of searching for a class of likelihood free methods during the 

last decade, there are an exponentially increasing number of papers connecting IT, 

estimation and inference.  These papers are connected in a number of dimensions.  First, 
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they all are based on optimizing a version (discrete or continuous) of Eq. 2.13.  Second, 

the optimization is always with respect to the observed moments where these moments 

are viewed as pure or noisy.  Bera and Bilias take us through a fascinating historical 

review of these types of estimation rules and provide an easy to follow trail of statistical 

developments within a unified setting.  Their review takes us back to Pearson’s Chi-

squared goodness of fit test, the traditional method of moment, the ML, the connection 

between the ME and the 2χ and then proceed to the original work on EL and GMM as 

well as other information-theoretic methods.   This review and perspective brings us up to 

current GMM type methods.  From here, we progress via a number of papers presenting 

new results and new developments.  These developments include (i) improved confidence 

intervals and tests for such models, (ii) new information-theoretic moment estimators and 

extensions, (iii) new interpretations of such models and (iv) applications and specialized 

cases. 

Imbens and Spady develop improved confidence intervals for the GMM method 

that are based on empirical likelihood methods. These new intervals are constructed for 

the exactly identified and over identified moment conditions cases.  They contrast the 

large and small sample behavior of these EL-based intervals with the standard GMM 

approach and demonstrate that for small samples the different methods provide 

significantly different intervals.  

Ramalho and Smith examine and develop non-nested tests for competing moment 

condition models within the framework of the Generalized EL. They show how tests of 

non-nested hypotheses might be constructed from alternative estimators to the two-step 

GMM estimator, which is known to have poor properties in small or moderate-sized 
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samples.  Ramalho and Smith address a substantial gap in the literature by providing 

adequate tests of non-nested hypotheses based on GMM.  

Within the information-theoretic-GMM framework, van Akkeren, Judge and 

Mittelhammer develop a new estimation method for the case where the linear model may 

be ill-behaved or ill-conditioned (e.g., possibly weak instruments, multicollinearity, small 

samples) and where the orthogonality condition E[X’εε]=0 does not hold.  Their method 

falls within the class of EL estimators and makes use of the over-identified noisy 

(generalized) moment formulation (e.g., the GME) to assign the possible range for the 

parameters.  This method may be viewed as a more robust version of the GME as it is 

entirely data dependent.  This coordinate based formulation has attractive finite and 

asymptotic properties and can lead to post data densities along the lines of Zellner’s 

BMOM.   

 Nevo abstracts away from the traditional assumption that the sample is a random 

draw from the population of interest.  He assumes that the available data are a draw from 

some sampled population, rather than the “target population.”  Therefore, the empirical 

distribution is not a consistent estimate of the underlying data generation process.  He 

proposes a way to re-weigh the sample.  These weights are calculated by the inverse 

probability of the selection and thus make the sample a “representative” sample again.  

Within the information-theoretic methods, he develops a logistic selection model where 

the weights are constructed via Bayes rule. 

Kitamura and Stutzer continue their earlier work on the unification of 

information-theoretic methods and the GMM.  They develop the relationship between the 

cross-entropy projection and the linear projection to problems of estimation and 
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performance diagnostics for models in asset pricing.  By using large deviation (LD) 

theory they are able to provide a “frequentist” interpretation to cross-entropy and thus to 

nicely connect the “traditional” GMM with IT.  Further, their information theoretic LD 

approach is extended here from the iid to the non-iid case.   

Within the information-theoretic framework, Kim shows that Hansen’s optimal 

GMM estimator can be subsumed within the maximum limited information likelihood 

(LILH ) estimation context.  Through I–projecting10 the LILH from a set of distributions 

consistent with the limited information, contained in the (pure) moment restrictions, this 

LILH approach allows the researcher to draw Bayesian inference, using less-than-fully 

parameterized specifications of the likelihood.  The four main points Kim develops and 

discusses are that (i) a likelihood can be constructed on a subset of the parameters that are 

of interest using only limited moment information together with the I-projection 

functional,  (ii) GMM is fully subsumed by the LILH approach, (iii) the results enable 

one to make a Bayesian inferences (including model selection), and (iv) this method may 

be applied to problems which GMM have addressed by, even in the absence of a 

parametric likelihood specification.  Since the basic idea behind the LILH is related to 

Zellner’s BMOM, Kim contrasts and compares the two. 

Within a nested GME method, Golan and Perloff derive an axiomatic basis for a 

class of estimators.  They start by nesting the GME within two more general (Tsallis and 

Renyi) entropy measures indexed by a single parameter α, (Eq. 2.13), which they call 

GME-α.  Based on the earlier axiomatic derivations behind the ME, they show that the 

                                                             
10 I-projection theory states that out of a set of probability measures satisfying the same moment conditions 
one chooses the probability measure that minimizes the entropy distance, or K-L distance, from the true 
probability measure.  This is also known as the basic “cross entropy” formalism. 
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GME is the only method satisfying six natural axioms, while each of the more general 

GME-α estimators violates one of the basic axioms.  The small sample behavior of the 

different estimators is demonstrated via sampling experiments. 

Gregory, Lamarche and Smith continue the search for the small sample behavior 

of the information theoretic methods as compared with the iterated GMM.  They build on 

the early work of Imbens et. al (1998) and Kitamura and Stutzer (1997) and provide 

sampling experiments evidence for both estimators.  They make comparison in both the 

iid and non-iid worlds.  They show that the information-theoretic method provides 

superior size-adjusted power.  They conclude by applying these models to two 

macroeconomic time-series problems.  The first problem assumes independence of 

moments over time while the second assumes dependency.  

 LaFrance, Beatty, Pope, and Agnew use IT and ME in order to infer the U.S. 

income distribution from data on quintile and top-five percentile income ranges as well as 

intra-quintile and top-five percentile mean incomes. These different ME income 

distributions are combined with data on the demand for different food items in order to 

estimate the overall incomplete system of demand from a long time-series of U.S. 

consumption data. Within the discrete and continuous ME methods, they compare 

different forms of representing the available information.  The resulting ME distribution 

is either a piece-wise uniform density or a (smooth) continuous function.  

 Miller and Liu apply the ME principle to recover joint distributions from joint 

moments or marginal densities or both.  They provide a nice review of current 

information approaches for solving this problem and then introduce a new minimum 

cross-entropy method for recovering joint densities from incomplete information.  
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 Karantininis applies a version of the GME for analyzing a non-stationary 

transition probability matrix to examine adjustment in the Danish pork industry.  Due to 

missing data problems, he uses the ME and GME methods to disaggregate these missing 

data in a first step analysis. 

Maasoumi and Racine use a normalized entropy version of (2.13) to investigate 

possible non-linear relationships in stock returns.  Their entropy metric is defined over 

the densities of stock returns that are estimated non-parametrically.  They connect their 

measure in a very elegant way with the generalized entropy (2.13) and discuss the basic 

properties their measure satisfies.  They use their information measure to predict excess 

returns of monthly stock returns.   

As previously discussed, variations of the entropy and the K-L divergence 

measure are often used for both hypothesis tests and non-parametric methods.   In his 

work, Ullah expands on both of these issues.  First, he provides new results regarding the 

evaluation of the accuracy of approximations in general, such as evaluating the exact 

densities of some estimators and the relevant test statistics in finite sample econometrics. 

He compares the accuracy of alternative approximations.  Ullah develops a general result 

for the non-iid random vector with at least four finite first moments where he shows that 

the K-L divergence measure is a special case of this result.    In that way, he develops an 

asymptotic expansion of entropy and divergence functions.  Second, Ullah applies the K-

L measure toward non-parametric estimation and hypothesis testing such as non-

parametric kernel estimation and the F-type non-parametric test statistics.   

Ramsay and Ramsey develop a functional analysis of non-linear, time-series data.  

With the objective of identifying non-parametrically a set of differential equations that 
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capture the underlying dynamics of an economic production process, they are faced with 

a basic under-determined problem.   Instead of directly employing some version of Eq. 

2.13 subject to the observed information, they assume that even though the observed data 

are discrete the true underlying process is distributed smoothly and therefore can be 

characterized by a system of differential equations.  With this basic assumption, they 

proceed to develop their new and innovative method, contrast it with the ME approach, 

and apply it to examine the dynamics of a monthly non-seasonally adjusted index of 

production, for the U.S. manufacturing, over a long period.  In that way, they basically 

use more information than is commonly used with ME methods by incorporating a 

different penalty function and by introducing more structure.  It would be interesting to 

compare their approach with the BMOM that also uses a continuous density, is fully 

characterized within the ME formalism, but replaces the (economic) information they 

use, with more information on the observed moments. 

In order to estimate a labor supply function while permitting flexible preferences, 

van Soest, Das, and Gong develop a flexible non-parametric model of the utility function.  

They employ series expansions in hours and income to approximate the utility function.  

They use smooth simulated ML to evaluate their model for every given length of series 

expansion.  Building on the likelihood ratio test and its relationship with the entropy-ratio 

statistic, they use the K-L information criterion to choose the optimal length of the series 

expansion.  They choose the optimal length by generalizing Soofi’s information index (or 

the generalized entropy measure) to also account for the unobserved wage heterogeneity 

in their model. 
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4. Conclusion 

The current work in Information and Entropy Econometrics (IEE) can fill volumes upon 

volumes of journals.  Even though we could not capture all of the interesting new results 

here, I believe this volume contains a representative sample of the work on Information 

Theory and Maximum Entropy (ME) within IEE.  This collection of work includes both 

historical and logical perspectives as well as current state of the art research in the area.  

Where do we go from here, only the future knows, but it seems safe to predict that 

information theory, entropy and ME will continue to play an important role in the 

development of econometric thoughts, theory and applications.  
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