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Abstract
A generalized maximum-entropy-based approach to noisy inverse problems
such as the Abel problem, tomography or deconvolution is presented. In
this generalized method, instead of employing a regularization parameter,
each unknown parameter is redefined as a proper probability distribution
within a certain pre-specified support. Then, the joint entropies of both, the
noise and signal probabilities, are maximized subject to the observed data.
After developing the method, information measures, basic statistics and the
covariance structure are developed as well. This method is contrasted with
other approaches and includes the classical maximum-entropy formulation as
a special case. The method is then applied to the tomographic reconstruction
of the soft x-ray emissivity of the hot fusion plasma.

PACS numbers: 4230W, 0250F, 0250P

1. Introduction

A common problem in analysing physical systems is limited data. In most cases, these
data are in terms of a small number of expectation values, or moments, representing the
distribution governing the system or process to be analysed. Examples of limited data problems
include: reconstructing an image from incomplete and noisy data; reconstruction problems in
emission tomography such as estimating the spatial intensity function based on projection data;
estimation of the local values of some quantity of interest from available chordal measurements
of plasma diagnostics (the discrete Abel inversion problem); and simply reconstructing a
discrete probability distribution from a small number of observed moments.

When working with such limited data, an inversion procedure is required in order to
obtain estimates of the unobserved parameters. But with limited data the problem may be
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underdetermined, or ill-posed. Thus, given this underdetermined inversion problem, the
estimation problem can be thought of as choosing a criterion that picks out a unique distribution
out of the infinitely many (distributions) satisfying the data. The maximum-entropy (ME)
regularization provides an approach for analysing such noisy inverse problems. The ME
formalism was introduced by Jaynes (1957, 1963) and is based on Shannon’s entropy measure.
This formalism was extended and applied by a large number of researchers (e.g. Levine 1980,
Levine and Tribus 1979, Tikochinsky et al 1980, Skilling 1989, Hanson and Silver 1995, Golan
et al 1996). Axiomatic foundations for this approach were developed by Shore and Johnson
(1984), Skilling (1989) and Csiszar (1991).

In most of the above work, the objective is to estimate the most conservative distribution
given some limited number of moments or expectation values. These moments are assumed to
be perfect in the sense that what is measured or observed in an experiment must be the correct
value. In other words, the sample and population (correct but unknown) moments are taken to
be identical. Consider, for example, an experiment where the data are imperfectly measured,
or similarly, a set of experiments where the observed data may be noisy. In these examples the
observed moments may differ from the exact (unknown) moments. Therefore, what is really
observed in these cases is the set of noisy data or noisy moments.

The objective of this paper is to introduce, explore and test a generalized inversion
procedure for the tomography problem that adjusts for the noise in the observed data. This
generalized inversion procedure is an extension of the ME formalism of Jaynes (1957) and the
information theoretical approach of Levine (1980). It provides a more conservative inference
from noisy data, does not employ the traditional regularization parameter, and is free of
distributional assumptions.

The tomography problem formulation and suggested inversion procedure are discussed in
section 2. In section 3, the experiment and results are presented. Some concluding remarks
are discussed in section 4.

2. Reconstruction of the tomography problem

2.1. The tomography problem setting and solution

Consider the following discretized tomography model:

sk =
∑
i,j

pk
ijEij + εk (1)

where s is a K-dimensional vector of observed signals recorded by detector k, P is a (J × I )

known matrix of the proportion of the emission Eij accumulated in detector k, Eij is a (J × I )

matrix of unknowns to be recovered with the property that Eij � 0, and ε is a vector of
independently and identically distributed noise.

The objective is to recoverE from the aggregated noisy data s. However, since the number
of unknowns outnumbers the number of data points this problem is ill-posed (underdetermined)
and one needs to choose a certain criterion to reduce the problem to a well posed problem.
The classical maximum-entropy formalism provides such an inversion procedure where one
maximizes the entropy of E subject to the available information. See, for example, Ertl et al
(1996) for applying the ME method to analysing the tomography problem.

In this paper, we modify the above approach in two basic ways. First, we directly
accommodate for the noise in the data. Second, we view the constraints in a more relaxed way.
That is, the constraints represent a unique relationship between the observed sample’s moments
and the population’s moments, but the two sets of moments may be slightly different. Thus,
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unlike other theoretical approaches, the constraints here do not represent exact conservation
laws; they represent noisy and aggregated data, or a relaxed conservation law. To construct
this type of generalized model within the ME formalism and with minimum distributional
assumptions, both Eij and εks need to be transformed into proper probabilities. Following
Golan et al (1996) and Golan (1998) the model is represented as

sk =
∑
i,j

pk
ijEij + εk =

∑
i,j,m

pk
ij qijmzm +

∑
l

wklvl (2)

where qij is an M-dimensional vector of weights satisfying∑
m

qijm = 1 (3a)

and where ∑
m

zmqijm ≡ Eij . (3b)

The vector z is an M-dimensional support space with M � 2 specified such that z′ =
(z1, . . . , zM) where the prime denotes a ‘transpose’. If for physical arguments Eij � 0, then
all zm must be non-negative. Similarly, wk is an L-dimensional vector of weights satisfying∑

l

wkl = 1
∑
l

vlwkl ≡ εk. (4)

The vector v is an L-dimensional support space with L � 2 and is symmetric around zero.
Specifically, v′ = (v1, . . . , 0, . . . , vL) where v1 = −vL.

Building on the classical ME formalism, under the new generalized ME (GME) formalism
one maximizes the joint entropies of the signal, {qij }, and the noise, {wk}, subject to the
available data and the proper distributions’ requirements. For generalization, the model is
formulated in terms of the cross entropy (CE) which uses Kullback’s (1959) divergence measure
that takes into account the possible prior information for the set {qij }, {q0

ij }, if such information
exists. The priors w0

k for the noise are taken to be uniform over the symmetric support v. This
generalized inversion procedure is

min
q,w

I
(
q,w; q0,w0

) =
{∑
i,j,m

qijm log(qijm/q
0
ijm) +

∑
k,l

wkl log(wkl/w
0
kl)

}
(5)

subject to (2),
∑

m qijm = 1 and
∑

l wkl = 1.
The optimization yields

q∗
ijm =

q0
ijm exp

(∑
k λ

∗
kp

k
ij zm

)
∑

m q
0
ijm exp

(∑
k λ

∗
kp

k
ij zm

) ≡
q0
ijm exp

(∑
k λ

∗
kp

k
ij zm

)
�ij (λ∗)

(6)

and

w∗
kl = w0

kl exp
(
λ∗
kvl

)
∑

l w
0
kl exp

(
λ∗
kvl

) ≡ w0
kl exp

(
λ∗
kvl

)
�k (λ∗)

(7)

where λ∗ are the optimal (estimated) Lagrange multipliers associated with (2).



1274 A Golan and V Dose

Given this solution (6) and (7) and building on the Lagrangian, the dual, concentrated,
unconstrained problem is

L(λ) =
∑
k

skλk −
∑
i,j

log

[∑
m

q0
ijm exp

(∑
k

λ∗
kp

k
ij zm

)]

−
∑
k

log

[∑
l

w0
kl exp

(∑
l

λ∗
kvl

)]

=
∑
k

skλk −
∑
i,j

log�ij (λ)−
∑
k

log�k(λ). (8)

Taking the first derivatives of (8) with respect to λ and equating to zero, yields the optimal λ’s
which in turn yield {q∗

ij } and {w∗
k }.

A main feature of this generalized method, is that by introducing the noise and the
additional set of probability distributions {w}, the level of complexity and computation time
(relative to the classical ME or any other inversion procedure) does not increase. This is because
the basic number of the parameters of interest, the Lagrange multipliers, remains unchanged.
That is, regardless of the number of points in the support spaces (including the continuous
case) there are K Lagrange multipliers and both {qij } and {wk} are unique functions of these
parameters. This follows directly from (8).

Under this generalized criterion function (the primal 5 or the dual 8), the objective is
to minimize the joint entropy distance between the data and the priors, or the data and the
uniform distributions if no priors are used. As such, the noise is always pushed toward zero
but is not forced to be exactly zero for each data point. It is a ‘dual-loss’ objective function
that assigns equal weights to prediction and precision. Equivalently, it can be viewed as a
shrinkage inversion procedure that simultaneously shrinks the data to the priors (or uniform
distributions in the ME case) and the errors to zero. Before continuing, a short comparison
with other inversion procedures is briefly discussed.

Within the more traditional maximum-entropy approach, the above noisy problem is
handled as a regularization method (e.g. Donoho et al 1992, Csiszar 1991, 1996, Bercher
et al 1996, Ertl et al 1996, Gzyl 1998). One approach to recovering the unknown probability
distribution/s is to subtract from the entropy objective, or from the negative of the cross-
entropy objective, I (q,w; q0,w0), a regularization term penalizing large values of the errors.
Typically, the regularization term is chosen to be δ

∑
k ε

2
k , where εk is defined by (1) and

δ > 0 is the regularization parameter to be determined prior to the optimization (e.g. Donoho
et al 1992), or is iteratively determined during repeated optimization cycles (e.g. Ertl et al
1996). This approach, or variations of it, works fine when we know the underlying distribution
of the random variables and the exact variances (the population variances). For example,
the assumption of Gaussian noise is frequently used. This assumption leads to the χ2

distribution with a number of (random) constraints minus one degree of freedom. In that
case, the regularization problem is reduced to a reconstruction of the qij ’s for say, some
χ2
(K−1) < χ2

(K−1),0.95.
The solution to this class of noisy models was also approached via the maximum entropy in

the mean formulation (e.g. Navaza 1986, Bercher et al 1996). In that formulation the underlying
philosophy is to specify an additional convex constraint set that bounds the possible solutions.
Each observation sk is considered to be a mean of the process qij under some distribution
defined over this set. However, distributional assumptions are still necessary and a possible
knowledge of the constraint set is essential. The maximum entropy in the mean approach
was generalized further (e.g. Gzyl 1998) for finding the ME distribution/s from noisy data
with no assumption on the nature of the noise. But even under this innovative approach, a



A generalized information theoretical approach to tomographic reconstruction 1275

regularization term is still needed and some assumptions on the true value of the variances are
used. In the approach taken here, no such assumptions are used. The only assumption used is
that the sample errors are bounded (in some interval) within the set v. That is, the upper and
lower bounds on the errors’ supports replace the more ‘traditional’ regularization parameter.
In that view, this different and more relaxed regularization is not as restrictive since it is
done simultaneously for each observation individually where the values for these bounds are
taken directly from the sample. This is shown explicitly in the next section. To demonstrate the
performance of this generalized method a small number of numerical simulations are discussed
in the appendix.

In a different class of estimation approaches, such as those discussed by Csiszar (1991,
1996), the main idea is to convert the noisy system into a system of inequalities. This
can be done if the bounds on the magnitude of the errors are known, but increases the
complexity level of the solution. Other studies suggest the more traditional regularization
approach, but not within the ME formalism. Again, these different approaches require the
specification of some ‘smoothing’ parameter to reflect the available non-sample information
for each particular problem (e.g. Donoho et al 1992). To summarize, under the assumption
of normally distributed errors with a certain and known variance, the regularization approach
works well for a large enough data set. However, if the noise process is unknown, or if one
is faced with a small data set or a small number of experimental data, this assumption may
be incorrect and hard to confirm and may result in inconsistent estimates as well as high
variances.

Finally, to see the relationship with the more traditional (and parametric) inversion
approaches, assume that both {qij } and {wk} are characterized by the parametric exponential
(logit) distribution. (Note that for computational reasons, it is impossible to characterize the
distributions for {qij } and {wk} by the normal distribution.) Then, substitute these parametric
specifications in the discrete likelihood (multiplicity factor) objective to obtain a ‘generalized
log-likelihood’ function of the form

L(β) =
∑
k

skβk −
∑
i,j

log�ij (β)−
∑
k

log�k(β) (8a)

with β = −λ and with uniform priors for both qij and w. Now, as the end points of the support
space v approach zero (v → 0) the generalized maximum likelihood (logit) converges to the
‘traditional’ maximum likelihood model, which is equivalent (in this case), to the classical
ME. This happens as the number of observations (K) → ∞. However, since the whole logic
here is to accommodate for the noise while estimating the parameters of a small and finite data
set, this argument is just a consistency one.

2.2. Information, sensitivity, diagnostics and inference

Within the entropy approach used here, one can investigate the amount of information in the
estimated coefficients. Define the normalized entropy (information) measure as

S(Q∗) ≡ − ∑
i,j,m q

∗
ijm log q∗

ijm

(I × J ) logM
(9)

where this measure is between zero and one with one reflecting complete ignorance and zero
reflecting perfect knowledge. If the CE is used, the divisors should be the entropy of the
relevant priors {q0

ij }. This measure reflects the information in the whole system. Similar
normalized measures reflecting the information in each one of the i, j distributions are easily
defined.
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Next, following our derivation of the generalized ME formalism, it is possible to construct
the entropy-ratio test (which is an analogue to the maximum-likelihood ratio test). Let l� be
the constrained (by the data) ME with the optimal value of the objective function (5). Next,
let lω be the unconstrained one where λ = 0 and therefore the maximum value of the objective
function is (I × J ) logM + K logL (e.g. optimizing with respect to no data). Hence, the
entropy ratio statistic is just

W(ME) = 2lω − 2l� = 2
[
(I × J ) logM + K logL

][
1 − S(q∗,w∗)

]
. (10)

Under the null hypothesis of λ = 0, W (ME) converges in distribution to χ2
(K−1).

Finally, a ‘goodness of fit’ measure that relates the normalized entropy measure to the
traditional R2 is

pseudo − R2 ≡ 1 − l�

lω
= 1 − S(q∗). (11)

These measures are easily adjusted for the CE case where (I × J ) logM is substituted for the
total entropy of the priors.

Finally, we can derive the covariance matrix, which allows us to investigate the sensitivity
of the estimates. There are two ways to derive the variances in this approach. We start with
the traditional way and then discuss a different way. Under the more traditional way, the
variance-covariance matrix V (λ∗) of the real unknown parameters λ, given the data, is the
inverse of the Hessian of the dual formulation (8), evaluated at λ∗ (and at the mean values of
E∗
ij ). Therefore, the covariance elements of qij are

Cov(q∗) =
(
∂q∗

∂λ∗

)′
V (λ∗)

(
∂q∗

∂λ∗

)
.

Similarly,

Cov(E∗) =
(
∂E∗

∂λ∗

)′
V (λ∗)

(
∂E∗

∂λ∗

)

where E∗
ij = ∑

m q
∗
ijmzm.

As a closing note to this derivation, it is emphasized that the covariance elements, and
especially the variances of interest, are smaller than those of the ML or other regularization
approaches. This is due to the more ‘relaxed’ constraints of the approach taken here. These
relaxed constraints imply the relevant multipliers (in the primal or dual approach) are more
stable. This is also seen in the additional noise terms in (2).

A different and a more natural way of constructing the variances is Var(E∗
ij ) =∑

m q
∗
ijmz

2
m − ( ∑

m q
∗
ijmzm

)2
. In that case, the variance of each point estimate E∗

ij can be
interpreted as the estimated variance of the underlying estimated probability within the support
z. This is the largest possible variance of each point estimate, given the support space and
the data. But, as this variance is unique for this approach, in order to compare estimates with
the more traditional (Bayes or non-Bayes) methods we also developed the above variance-
covariance matrix. Note that this variance is sensitive to the number of points (M) in the
support space. For example, for uniform priors, as M → ∞ the variance converge to the
variance of the continuous uniform distribution.

Finally, using the dual approach, the objective here is to recover the K unknowns, which
in turn yield the J × I matrix E. However, it may be of our interest to also evaluate the impact
of the elements of the known P on each Eij (or qijm). That is, many times the more interesting
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parameters are these marginal effects. These marginal effects are just

∂qijm

∂pk
ij

= qijm
(
λkzm −Hijk

)
(12a)

∂Eij

∂pk
ij

=
∑
m

∂qijm

∂pk
ij

zm =
∑
m

qijm
(
λkzm −Hijk

)
zm (12b)

where Hijk ≡ ∑
m qijmλkzm. These effects can be evaluated at the mean values of the sample,

or individually for each observation and may be used to evaluate the optimal experimental
design. For the tomography problem, however, the more interesting values may be ∂Eij /∂sk or
the simpler quantity *E2

ij = ∑
k(∂Eij /∂sk)

2 which reflects the variances of the reconstructed
image.

3. Experiment and results

3.1. Experiment and estimation results

The formalism developed in section 2 of this paper has been applied to the reconstruction of the
soft x-ray emissivity of a hot fusion plasma. The experimental set-up employed to collect the
data is shown schematically in figure 1. Soft x-rays emitted by the plasma are detected by two
pin hole cameras each equipped with an array of 30 surface barrier detectors. Each detector
signal, sk , recorded by diode k depends linearly on the unknown local emissivity Eij defined
on the square mesh, shown in figure 1, with i, j = 1, . . . , 30. The physically meaningful
support for the reconstruction is, however, not the whole grid. It is restricted rather to the area
within the grid where viewing chords from the two cameras cross. Fortunately, this area is

Figure 1. A sketch of the soft x-ray set-up and pixel arrangement used for the emissivity
reconstruction.
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Figure 2. A reconstruction of the emissivity profiles using the generalized inversion procedure
developed here.

larger than the plasma cross section as obtained from equilibrium calculations and shown in
figure 1 as the closed triangularly shaped curve. Inside the physically meaningful region we
choose a flat default model for Eij (E0

ij = 10−2) and outside this region we take E0
ij = 10−5, a

choice which serves to push the emissivity towards zero in the region which does not contribute
information to the data. The pixel matrix P k

ij used in this work is identical to that used earlier
(Ertl et al 1996).

Keeping our objective of minimal distributional assumptions in mind, the support space
for each error term is chosen to be uniformly symmetric around zero. For example, for
L = 3, v′ = (−α, 0, α) or for L = 5, v′ = (−α,−α/2, 0, α/2, α). If we knew the
correct variance, a reasonable rule for a is the three-standard deviation rule (Pukelsheim
1994). However, given our incomplete knowledge of the correct value of the scale parameter
σ , we use the sample variance, given to us by the experimentalists, as an estimate for α.
Specifically, since the experimental input data were specified with an error of 5%, we used
v′
k = (−0.15sk, 0, 0.15sk) = (−3σk, 0, 3σk) = (−αk, 0, αk) as the bounds for the support of

ε. For a detailed set of experiments investigating the small sample behaviour of the three-sigma
rule see Golan et al (1997).

Finally, the specification of the support for Eij requires the choice of a scale for the
emissivities. Luckily, this choice is usually known to the researcher from the physics of the
problem. In the present case we draw on existing results and a priori knowledge and chose
z′ = (0, 0.01, 0.02)which extends sufficiently beyond the maximum emissivity. It is important
to note that the estimated values are not sensitive to this choice as long as the pre-determined
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Figure 3. A reconstruction of the emissivity profiles using the quantified maximum-entropy
method.

Table 1. The different statistics for the two methods compared.

GME (figure 2) Quantified ME (figure 3) GME CASE B

Normalized entropy 0.171 0.157 0.123
Pseudo-R2 0.829 0.843 0.877
Ent-ratio statistic 152.8 2140.0 121.4

Approximate 1 s on a PC, 20 s on an IBM 1 s on a PC,
computing time pentium III 370 workstation pentium III

choice is consistent with the physics of the problem. For example, if instead of above support,
we would specify 10z, our results will remain practically unchanged.

Figures 2 and 3 show the reconstructed soft x-ray emissivity. The data in figure 2 result
from estimation using the method described in this paper. In that case, the entropy-ratio
statistic is 152.8, which is significant at the 1% level. Figure 3 was obtained using quantified
maximum entropy (Skilling 1989, Ertl et al 1996). Table 1 summarizes the basic statistics of
these estimates. To make these statistics comparable, the estimates of the quantified entropy
method were transformed to be fully consistent with those of the GME.
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Figure 4. The difference between the estimates of the quantified entropy approach (figure 3) and
the GME (figure 2).

3.2. Discussion

As is expected, at a first sight, the overall shape of the two results seems to be very much
the same. But investigation of these two figures reveals that the main difference between the
two profiles is the significantly more spiky surface (even outside the physically meaningful
region) of the traditional quantified maximum-entropy reconstruction. This is not unexpected
because, in the present treatment (figure 2), misfits between the data and the model (2) are
absorbed in an individual and self-consistent way through the errors εk ≡ ∑

l wklvl . In the
quantified maximum-entropy treatment, on the other hand, the errors are fixed and misfits are
reflected in a ‘rough’ reconstruction. Furthermore, in the quantified ME approach a quadratic
loss function, that pushes the errors to zero in a faster rate, is employed, which is also reflected
in the ‘rough’ reconstruction.

To demonstrate the qualitative differences of these two methods of estimation, figure 4
presents ‘figure 3 minus figure 2’. The qualitative difference of these two estimation methods
and the relative smoothness of the new method are quite obvious. Furthermore, this difference
in smoothness can be quantified. A convenient measure of the curvature and hence the
smoothness of a function E(x,y) of the two variables (x, y) is the global second derivative
squared:

φ =
∫ {(

∂2E

∂x2

)2

+ 2

(
∂2E

∂x ∂y

)2

+

(
∂2E

∂y2

)2
}

dx dy.

Note that the lower bound of φ is zero, which applies for a constant or a linear function in x

and y. We approximate φ by substituting finite second differences for the partial derivatives
(Abramowitz and Stegun 1965). In the analysis done here φ is smaller by a factor of 4×107 for
the GME reconstruction as compared with the quantified MaxEnt reconstruction. As we expect
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plasma reconstruction to yield a smooth reconstruction, the results of our GME estimates seem
to be much more convincing.

An additional advantage of the present method on the previous treatment lies in the
fact that a single pass calculation provides the final results. In contrast, in the quantified
ME method, in order to find the most probable value of the hyperparameter controlling
the amount of regularization, repeated calculations are necessary for different values of this
parameter. Since about 10–20 iterations have to be performed to invert the present data,
the gain in computational speed is of the same order (e.g. in the present case, 20 iteration
were needed). This is of course very welcome for visualizing plasma dynamics since the
experimental system is capable of sampling at 4 µs intervals. See the details in the bottom
row of table 1.

Finally, another advantage of this approach is its robustness to the prior and model
specification. For example, instead of specifying the priors outside the physically meaningful
regime to be very small (figure 2), we specify the model such that the support space for
each pixel outside this regime is zero (call it GME, case B). The specification inside this
regime remains as before. That is, inside the regime z′ = (0, 0.01, 0.02) and outside z = 0.
Regardless of this different specification, the reconstructed image (not presented here) is
practically equivalent to figure 2, indicating the robust nature of this procedure. The statistics
for this case are represented in column 4 of table 1 and are quite similar to those of column 2
(figure 2). Note, that as is expected, the goodness of fit measure is slightly superior to this of
figure 2.

Finally, a short discussion of the priors and supports is in place. For the tomography
problem discussed here, the specification of the support spaces is quite natural. First, the
support v for the noise was discussed earlier and is determined directly from the data or the
experimentalists. The support space z must be positive. As long as this support is specified
such that it spans the correct true values of the image, the solution is quite robust to this
specification. Obviously, if this support is specified incorrectly the reconstructed image will
be affected. But luckily, we know here that the support should be positive with a lower bound
at zero so miss-specification seems illogical.

4. Concluding remarks

In this paper we develop and apply a generalized, informational-based, inversion procedure
for tomographic reconstruction. This new approach is easy to apply and compute, uses less
a priori assumptions on the underlying distribution that generated the data, accommodates
for the noise in the data and yields good estimates. We compared our approach with other
regularization methods and apply it to the reconstruction of the soft x-ray emissivity of a hot
fusion plasma. Furthermore, the classical ME is just a special case of this new and generalized
method.

This generalized inversion procedure can also be used to reconstruct the images of a large
number of other noisy problems such as the Markov (or matrix reconstruction) problem.
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Appendix. A simulated (Monte Carlo) example

To illustrate, evaluate and provide a flavour for the performance of the generalized inversion
procedure discussed here a simple example is presented and contrasted with other procedures.

To keep these simulations as general as possible, instead of investigating only the case
of a 34 × 34 matrix, we consider the four cases I, J = 5, 10, 50, 75. The correct values for
the unknown (I × J ) E matrix are chosen arbitrarily from a multi-normal distribution with
four different means and variances. In this way we have four picks with different spread each.
For each I (and J ) and a noise level of about 5%, 100 samples were generated and estimated
with three different methods. The results are summarized in terms of the mean squared errors
(MSE) and the total variance (TV) where

MSE ≡ 1

100

100∑
samples=1

{∑
i,j

(E∗
ij − Eij )

2

}
= total variance + bias2.

The results are presented in table A1, where E∗ is the matrix of estimated values and
E is the matrix of correct values. Each row of table A1 presents estimates resulting from
a different inversion procedure. The different procedures used are the classical ME (Jaynes
1957, Levine 1980, Skilling 1989), the RAS method of biproportional adjustments often used
for matrix reconstruction (Bacharach 1970, Schneider and Zenios 1990) and the GME method
discussed in section 2. In each case and method the correct priors were used. In all cases
and dimensions of these simulated examples the GME is significantly more accurate and has
a significantly lower variability as compared with the other methods. Finally, the same set of
simulations were repeated for the incorrect uniform priors and for different noise levels. Since
the results are qualitatively similar to the results shown in the table, they are not presented
here.

Table A1. Summary of simulated sampling results.

Estimation MSE TV

I = J = 5 ME 1.165 0.056
RAS 2.391 0.135
GME 0.265 0.009

I = J = 10 ME 0.976 0.025
RAS 2.385 0.044
GME 0.246 0.004

I = J = 50 ME 0.663 0.004
RAS 1.396 0.005
GME 0.172 0.0007

I = J = 75 ME 0.671 0.003
RAS 1.413 0.003
GME 0.171 0.0004
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