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is proposed. This method is based on a generalized maximum entropy formalism, and

makes use of both sample and non-sample information in determining a basis for
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shrinkage and variable selection are achieved on a coordinate by coordinate basis, and the

procedure works well for both ill and well-posed statistical models. Analytical asymptotic
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1. Introduction

Given a finite and non-experimental data set economists face two basic decisions.  The

first is the decision about the set of non-extraneous variables and related functions to

include in the design matrix.  The second is the choice of the estimation rule to be used in

recovering estimates of the unknowns in the corresponding parameterized model.

Traditionally, the model selection and estimation problems have been separated

(Kempthorne, 1987) where the choice of the estimation rule is done after the choice of

model and variable selection.  In reality, however, the two decisions are interdependent as

the sampling performance of the estimation procedure is conditioned by the model

selection choice.

The objective of this paper is to construct an estimation rule that simultaneously

considers the problems of statistical variable selection and parameter estimation.  This

semi-parametric estimation rule has its roots in information theory and builds on the

generalized maximum entropy (GME) and generalized cross entropy (GCE) estimation

rules proposed by Golan, Judge and Miller (1996).  Two main properties of this proposed

estimation and variable selection rule are worth noting.  The first is that this method

makes use of both sample and non-sample (prior) information on a coordinate basis.  The

second is that the prior for each coordinate (or variable) is determined endogenously

during the optimization.  That is, the optimization is done simultaneously with respect to

both the posterior and an endogenously determined weight imposed on a convex

combination of informative and non-informative priors.
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The statistical model and variable selection rules are specified and reviewed in

Section 2. The traditional maximum entropy formalism and the GCE estimators are

reviewed in Section 3. In Section 4, the proposed flexible data weighted prior (DWP)

estimation rule is formulated and its corresponding sampling characteristics are

discussed. In Section 5, some sampling experiments are reported. These experiments

demonstrate the empirical risk and variable identification performance of the DWP

estimator. Section 6 summarizes and concludes this paper.

2. The Problem - Background and a Brief Review

To make exposition easier, consider the traditional linear statistical model.  Let us assume

that we are unable to directly measure the unknown K-dimensional parameter vector ββ .

Instead, we observe a T-dimensional vector of noisy sample observations

  y = y1 , y2 ,K , yT( )′  that are consistent with the underlying data generation process model

y = X ββ + e                                                                    (2.1)

where X is a fixed T × K( ) full column rank design matrix known to the experimenter.

Further, it is assumed that

Assumption A1.  ββ ∈B  where B is a convex set.

Example 1: kk
K zB (|{ ∈ℜ∈= βββ , },...,K,k=zk 21),

Given the data generation process described by (2.1), the objective is to derive an

estimator that uses minimum assumptions on the likelihood structure and simultaneously
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identifies the extraneous variables on a coordinate-wise basis.  Before developing this

estimator, we briefly review some of the current variable selection criteria and models.

Within the context of statistical model (2.1), the variable selection problem may be

described in the following way.  An investigator has a single and non-experimental

sample of data that is known to have the linear functional form of (2.1).  Suppose that

some covariates are unrelated to the prediction of y, so the true relationship may be

characterized by a lower-dimensional parameter space ββ
0
. Consequently, we visualize a

K-dimensional parameter space that includes the set of K0
 relevant variables, plus an

additional possible K − K0  extraneous variables with coefficients of zero. Thus, the

design matrix consistent with the data generation process is a proper subset of the

included variables. In terms of variable selection, there are 2 K  possible models that can

be obtained from the general model (2.1).  However, in most cases we employ our

knowledge from economic theory to reduce our choice, of possible models, only to those

remaining variables that include some uncertainties.

Traditionally, there are two elements in the criterion function for the various

variable selection procedures. One element involves a measure of “goodness of fit” while

the other involves a penalty for complexity, which is a function of the number of

variables K0  in one of the competing models.  Following Zheng and Loh (1995), let

MG K0( ) be the measure of goodness of fit for the competing model K0 , then the various

sampling theory estimators ˜ K 0  are asymptotically equivalent to

{ }
KK

KhKMGK
≤≤

+=
00

2
00 ˆ)()(minarg

~ σ  (2.2)
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where ˆ σ 2  is a consistent estimate of σ2  and h K( ) is some non-linear function(e.g.,

Hocking, 1976; Amemiya, 1980; Laud and Ibrahim, 1995; Mallows, 1973; Miller, 1990;

Mitchell and Beauchamp, 1988)1.  For a recent review and development of both

parametric and nonparametric approaches to variable selection, within a general

discrimination framework, see Lavergne (1998).

In most cases, however, we have some prior knowledge and/or non-sample

information that come from economic theory and from understanding our data.  The

variable selection methods discussed above do not “quantify” this knowledge.  But some

of this knowledge (priors) may be quantified and incorporated directly.  This is addressed

in the Bayesian approach to model selection, which also involves setting prior

probabilities over the large class of models being considered together with setting the

corresponding priors for the parameters of each model (see, for example, Zellner and

Vandaele, 1975; George and McCulloch, 1993; Geweke, 1994; Kass and Raftery, 1995;

Zellner, 1996b)2. The model developed here also uses prior information, but introduces

this knowledge in a different way.  This is discussed in the next section.

                                                
1 Among the more common methods are the C

p
 (Mallows, 1973) and the Akaike’s (1974) Information

Criterion, AIC.  For example, if h K( ) = 2 K T  and MG K 0( )= y − X ββK 0

2 , Equation (2.2) reduces
to the AIC. For more discussion of the statistical properties of these criteria see for example Shibata (1981)
and Zhang (1992).  Other criteria, such as Schwarz ‘s (1978) Criterion SC or the Zheng and Loh (1995)
generalization of C p  as well as cross validation (Breiman and Spector, 1992; Stone, 1974) and penalized
likelihood (Sin and White, 1996) are quite commonly used.
2  For a good review and recent developments of the Bayes factors within Bayesian testing and model
selection see Berger and Mortera (1999).
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3. A Cross Entropy Estimator – Review, Background and Motivation

As an alternative to traditional frequentist shrinkage, pre-test and Bayes estimators for the

location vector in (2.1), Golan, Judge and Miller (1996) proposed, for both the symmetric

and non-symmetric cases and for both well and ill-posed problems, a new shrinkage

estimation rule. This estimation rule is based on the entropy measure of Shannon (1948),

a reformulation of the maximum entropy (ME) formalism of Jaynes (1957a; 1957b;

1984), Levine (1980), Shore and Johnson (1980), Skilling (1989) and Csiszár (1991), and

the cross entropy principle of Gokhale and Kullback (1978), Good (1963) , and Kullback

(1959).  Before developing the new entropy-based variable selection model, a brief

review and background, for both the ME and GME, are presented.

3.1. The Classic Maximum Entropy Model

To provide a basis for understanding the philosophy of the ME approach, consider the

following example.  Let { }Mθθθ ...,, ,21=Θ be a finite set and p be a probability mass

function on Θ .  The Shannon's information criterion, called entropy, is

∑ =
−= M

i ii ppH
1

log)( p  with 00log0 ≡ .  This information criterion measures the

uncertainty, or informational content, in Θ  which is implied by p.  The entropy-

uncertainty measure H(p) reaches a maximum when Mppp M /1...21 ====  and a

minimum with a point mass function. Given the entropy measure and structural

constraints in the form of moments of the data (distribution), Jaynes (1957a, 1957b)

proposed the maximum entropy (ME) method, which is to maximize H(p) subject to

these structural constraints. If no constraints (data) are imposed, H(p) reaches its
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maximum value and the distribution of the p's is a uniform one. Thus, if we have partial

information in the form of some moment conditions, tY  (t=1, 2, …, T) , where T<M, the

maximum entropy principle prescribes choosing the )( ip θ  that maximizes H(p) subject

to the given constraints (moments) of the problem. The solution to this underdetermined

problem is







−∝ ∑

t
itti Yp )(exp)(ˆ θλθ  (3.1)

where λλ are the T  Lagrange multipliers.

If prior information, iq , concerning the unknown ip  exists, then one alternative

to the ME approach is to minimize the Kullback-Leibler (K-L) entropy-distance between

the post-data weights and the priors (Gokhale and Kullback, 1978). Under this criterion,

known as cross entropy (CE), the problem of recovering p, may be formulated as

minimizing the CE subject to the relevant structural constraints (moments).  The resulting

solution is







∝ ∑

t
ittii Yqp )(exp)(~ θλθ .  (3.2)

When the prior information iq  has uniform mass, the optimal solutions of the ME and

CE problems are identical.
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To relate the ME formalism to the more familiar linear model (2.1), consider a

special case of this model where B of A1 is {B k k
k

= ∈ℜ ∈ =∑ββ 1 0 1 1β β[ , ], }  and e=0=0.

Thus,

pây XX ≡= (3.3)

and p is a K-dimensional proper probability distribution.  The ME formulation is
















−=

=

∑

∑

k

k
kk

pX

pp

ME

        1= and = s.t.
    

logmaxargˆ

kpy

p

. (3.4)

Similarly, the CE formulation is just

( )
















=

=

∑

∑

k

k
kkk

pX

qpp

CE

        1= and   = s.t.
   

 logminarg~

kpy

p

(3.5)

where ( ) ( )I p p qk k k
k

p q, log= ∑   is the Kullback-Leibler information, or CE, measure.

The exact CE solution is

( )
( )ηη~

~exp
exp

exp

exp
1

~

1

~

1

~

~

Ω
≡

Ω










≡
















=
∑

∑ ∑

∑
=

=

= kk

T

i
ikik

k
ik

T

i

ik

T

i
ikik

k

q
xq

xq

xq
p

η
λ

λ

λ
(3.6)

for some natural K-dimensional vector ηη .  The dual CE counterpart is

( ) ( ){ } ( ){ }Inf I Sup X Sup F
P D Dp

p q y y
∈ ∈ ∈

= ′ − ′ = ′ − , log
λ λ

λλ λλ λλΩ ηη (3.7)
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for ( ) ( )F ηη ηη= log Ω  and where { }P X= =p p y:   is a set of proper (normalized)

distributions satisfying the linear constraints (3.3), and D is the set

( ){ }∞<<Ωℜ∈ ëë ' : XT .  Having solved for 
~
λλ , one gets

( )~
~

~p =
∂

∂
F ηη

ηη
. (3.8)

3.2. The Linear GCE Model

Building on the above, we go back to model (2.1) and assumption A1.  Let kz  of

Example 1 be an M-dimensional vector ( ) )',...,(, 1 kMkkkk zzzz =≡z  for all k.  Instead of

searching directly for the point estimates ββ , we view ββ  as the expected value over some

reference set B.   To do so, let pk  be an M-dimensional proper probability distribution

defined on the set kz  such that

[ ]k
m

kmkmk k
Ezp zp∑ ≡=β  or [ ]zPE=ββ . (3.9)

In this way the observed data y are viewed as the mean process z with a probability

distribution P that is defined on B ( )sor 'kz .  Before proceeding, it helps to assume

Assumption A2.  V∈e  where V is a symmetric around zero convex set.

Example 2: { veV t
T (| ∈ℜ∈= e , }.,...,2,1), Ttv =

Thus, Similar to the ββ’s above, each error term is redefined as

[ ]v∑ ≡=
j

wjtjt t
Evwe  or [ ]ve WE= . (3.10)
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Having reparameterized ββ and e, the linear model can be specified as

tj
j

j

K

k

M

m
tkkmkmt wvxpzy ∑∑∑ +=

= =1 1

, or [ ] [ ]vy WP EXE += z , and the GCE rule is

GCE=

( ) ( )

[ ] [ ]







=+

+=

∑∑

∑∑∑ ∑

j
tj

m
WP

t j
tjtjtj

k m
kmkmkm

w

wpEXE

uwwqpp

1  ;1=   ; =     s.t.
   

log logminarg~

km

,

vzy

p
p

. (3.11)

The solution is

)
~

(

)
~

exp(

)
~

exp(

)
~

exp(
~

λ

λ

λ

λ

k

t
tkkmkm

m t
tkkmtkm

t
tkkmtkm

km

xzq

xzq

xzq
p

Ω
≡=

∑
∑ ∑

∑
(3.12)

and

)
~

(

)
~

exp(

)
~

exp(

)
~

exp(~
λ

λ

λ

λ

t

jttj

j
jttj

jttj
tj

vu

vu

vu
w

Ψ
≡=

∑
(3.13)

where the prior weights for p
k are qk k kMq q= ( ,..., )'1  and the corresponding prior

weights for w, consistent with the set of discrete points v, are ut = ( ,..., )'u ut tJ1 .  With

these estimates we proceed to calculate the point estimates kmm kmk pz ~~ ∑≡β  and

tjj jt wve ~~ ∑≡ .

Finally, the dual GCE is

DWwPp

XSupIInf
t

t

∈∈∈ 





 Ψ−Ω= ∑ ∑

λλ

λλλλλλ

,

)(log)'(log-')(
k

kyuq,w;p,
. (3.14)
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Solving the dual yields the optimal λλ, which in turn yields the point estimates via (3.12)

and (3.13).  Finally, the Hessian matrix of the GCE problem is positive definite for

p, w >> 0 , and thus satisfies the sufficient condition for a unique global minimum3.

3.3. Discussion

In terms of the specification of z
k  and v, it is traditional to assume that the elements of ββ

and e are finite, and that β
k  and e

t
 are drawn from a finite sample and are usually

bounded (see A1-A2). Furthermore, most sciences have a conceptual base for identifying

and defining a relevant set of variables, along with the characteristics of the

corresponding parameters consistent with a particular problem or data generation process.

For example, equality and inequality constraints on β
k  commonly arise in many

econometric and other scientific applications, and theory or prior empirical results permit

the parameters to be signed or specified within a bounded range [a, b].  In economics,

behavioral and technical coefficients such as marginal productivity, marginal propensity

to consume or price elasticities may be classified as nonnegative or positive and naturally

bounded.  In terms of v, one possibility is to use the sample (empirical) variance of y and

the three-sigma rule.  This is the approach taken here.

Next, one may ask how sensitive are the estimates to the specification of z
k .  The

simple answer is that as long as the center of these supports remain unchanged, say zero,

the estimates are practically insensitive to changes in the boundary points of the supports.

For example, let z
k =(-C, 0, C)’ for each k.  Then, a symmetric change of these supports

to z k =(-100C, 0, 100C)’ has practically no significant effect on the estimated ββ ’s.  Since

                                                
3  Since for uniform prior distributions the GCE solution reduces to the GME solution, only the GCE
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in this work the objective is to identify the extraneous and the non-extraneous variables,

the choice of zero as the center point of the supports, for each k, seems to be natural.

However, it is emphasized that for small data sets, the estimates may be sensitive to a

change in the center of the supports z.

3.4. Comparison with Other Estimation Rules

First, we note that, unlike the usual Stein-like estimators (e.g., Stein, 1955, 1981; James

and Stein, 1960; Judge and Bock, 1978; Brown, 1966; Bock, 1988), the GME-GCE

estimators shrink estimates on a coordinate-by-coordinate basis. For example, if the

support vector kz  is centered at zero, the coefficients close to zero receive maximum

shrinkage 4.

Second,  we note that the GCE formulation, that leads to post-data means, has

many of the characteristics of the standard Bayesian conjugate analysis where the

posterior mean is a matrix-weighted combination of the prior means and the OLS

estimates.  In the GCE approach however,  the posterior means are weighted

combinations of the data and the priors within the supports.  Consequently, the posterior

means are always within the bounds of the supports Z and v5.

Finally, it is important to note the relationship between the GCE-GME entropy

based estimation rules and Zellner’s seminal BMOM approach (e.g., Zellner 1996a,

1997; Tobias and Zellner, 1999).  Like the GCE method, the objective behind the BMOM

                                                                                                                                                
method is presented here. But unlike traditional Bayes estimators, we always specify the support spaces
that bound the possible parameter space.
4  For a detailed comparison and discussion of other entropy and non-entropy regularization methods, as
well as the maximum entropy on the mean, see for example Donoho, Johnstone, Hoch and Stern (1992),
Golan, Judge and Miller (1996, Chp. 8) and Bercher, Besnerais and Demoment (1996).
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method is to estimate the unknown parameters with minimum assumptions on the

likelihood function.  As stated by Zellner (1997, p. 86), “The BMOM approach is

particularly useful when there is difficulty in formulating an appropriate likelihood

function. Without a likelihood function, it is not possible to pursue traditional likelihood

and Bayesian approaches to estimation and testing.  Using a few simple assumptions, the

BMOM approach permits calculation of post-data means, variances and other moments

of parameters and future observations”.

In the BMOM approach one starts by maximizing the continuous entropy function

(of a density function) subject to some T side conditions (moments) and normalization.

This yields the average log-height of the density function, which is the least informative

density given these side-conditions.  Thus, under the BMOM approach one works with

the most uninformed, that is maxent, post data density for the parameters.  A further

advantage of the BMOM approach is that many types of side conditions can be (and have

been) utilized in order to obtain post data densities for parameters and future

observations.  These side conditions include bounds on the parameters’ values, bounds on

the error terms’ ranges, inequality restrictions, fractile conditions, and moment

conditions.  For more innovative applications of the BMOM see, for example, LaFrance

(1999) and the discussion in Zellner (1999).  For a full comparison of the traditional

Bayes and the BMOM approaches see Zellner (1997, Table 1) and for an information

theoretic derivation of Bayes’ Theorem that provides a link between maximum entropy

procedures and Bayes’ Theorem see Zellner (1988) and Soofi (1996).

                                                                                                                                                
5 For other non-Bayesian methods see for example the recent work on the empirical likelihood (e.g., Owen,
1990, Qin and Lawless, 1994), weighted least squares and the GMM (e.g., Hellerstein and Imbens, 1999;
Imbens,  Johnson and Spady, 1998).
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Even though the basic objectives of the BMOM and the GCE are similar, they differ

in their inputs. Following Zellner, the basic inputs in the BMOM are the  (i) data, (ii)

prior information, (iii) mathematical form of the model, (iv) moments of the parameters

and future values, and (v) the Maxent principle.  The two basic differences in the GCE

inputs are in the way prior information is incorporated and the assumption (input) on the

moments of the parameters and future values. Specifically, under the GCE rule, the prior

information is incorporated via three routes: the support spaces (z and v), the priors in the

objective functional (q and u) and other restrictions that may enter as additional

equality/inequality constraints. Further, the GCE rule is specified such that each data

point enters directly in the optimization (rather than a quadratic form of the data or the

moments’ input). Therefore, the moment requirement can be thought of as a “weak”

moments’ requirement in the sense that the sample’s moments may be different (up to a

certain distance which is data dependent) from the underlying population's moments.

Obviously, our choice of an estimator is problem and data specific and strongly depends

on the amount of information we have with respect to a specific problem, model and data.

4.  A Flexible, Prior, Data-Based Estimator

In this section the GCE estimator is extended so that it embraces both the model

identification and estimation objectives discussed earlier.  To accomplish this task the

GCE estimator is reformulated such that the extraneous variables are identified and the ββ
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parameter space may be truncated, or all variables are retained but the coefficients of

extraneous variables are shrunk toward zero6.

Given the objective of identifying possible extraneous variables, we specify the

discrete support space z
k  for each β

k  to be symmetric around zero and employ the GCE

estimator with a unit mass prior on zero. While effective for identifying extraneous

variables, as an estimator of ββ  under a squared error loss measure, this does not lead to a

minimax rule. If, on the other hand, we wish to have estimators that, under a squared

error loss measure, are minimax and thus superior to traditional estimators over all, or

part, of the parameter space, the GCE estimator that uses uniform priors (or similarly, the

GME) is a good rule. However, if our objective is to shrink but not necessarily eliminate

the extraneous variables, and simultaneously produce an estimator that has a good

sampling performance over the whole range of the possible parameter space, then we

may combine the GME and GCE (or the GCE with uniform priors and the GCE with

spike priors) estimators.  This is the formulation proposed here.

We start by specifying each z
k  and v to be symmetric around zero, with large

lower and upper bounds for z and the three-empirical-sigma-rule for v, so that β
k  and e t

are contained in a fixed interval with arbitrarily high probability. We also specify, as a

possible alternative for each β
k , a “spike” prior, with a point mass at z

km
= 0 , for each

  k = 1, 2,K, K .  Thus, a flexible, data-based prior is specified such that for each β
k

coordinate either a spike prior at the z km
= 0 , a uniform prior over the discrete support

space z
k , or any convex combination of the two can result.  The goal is to produce a

                                                
6  For other approaches with similar objective see for example the Bayes-Stein estimators for the normal k-
means reviewed and developed in Zellner and Vandaele (1975).
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natural adaptive statistical method that is data based and free of subjective choices except

for the bounds on the support spaces. Because we are interested in a formulation that puts

pressure on the data by including both uniform and spike prior alternatives, or some

convex combination of the two, we are not able to make use of the conventional cross

entropy formalism. Consequently, given the problem at hand, and within the entropy

approach, we consider an extended entropy formulation. But because the qk  prior

alternatives cannot be introduced as structural constraints, we must find a way to

introduce them in the objective function. To accomplish this, consider the following

variant of the GCE formulation of Section 3.

( ) ( )( )[ ]

( )∑ ∑∑∑

∑ ∑

+++

+−−







−≡

k jt
tjtjtjkhkh

hk
kh

m
kmkmkmk

kk
k m

kmkmk

uwwqppqpp

MppIMin

,,

ã

log)/log()/log(

log1 log1)(
ã

/
γγγγ

ξγγγ

w,pp,

w,pp,

 (4.1)

subject to

y z p x v wt km
k m

km tk j
j

tj= +∑ ∑
,

(4.2)

and

∑ =
m

kmp 1 , ∑ =
h

khp 1γ , ∑ =
j

tjw 1 . (4.3)

and where the prior weight (prior mixture) kγ  is
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∑≡
h

khhk pz γγγ                                                               (4.4)

with 01 =γz  and 1=γ
Hz  always and where km

m
km qq log∑−≡ξ .  Further, except for the

point mass prior q
k , all other priors (i.e., q γ  and u

t
) are specified to be uniform.

4.1 The Criterion

Having specified the new data-weighted prior (DWP) estimation rule, we now discuss the

explicit structure of the objective function (4.1). There are four parts to this objective

function. Just as in Section 3 (the upper part of Equation 3.11), the last element on the

Right Hand Side (RHS) of (4.1) is the entropy of the noise component. Since v is

specified to be symmetric, and equally spaced, support around zero, this part of the

objective function shrinks the noise components toward zero. The bounds for the errors’

supports are just yσ3±  where yσ  is the empirical standard deviation of the sample. The

first two elements on the RHS of (4.1) relate to the uniform and informative (spike) priors

respectively, with corresponding weight [ ]1,0∈kγ , where γ k = 0  implies use of a

uniform (uninformative) prior, while γ
k

= 1 implies use of a spike prior. In terms of the

first RHS element, as noted in Section 3, when using a uniform prior over the support

points there is no need to specify this prior explicitly. The third element in the objective

function relates to the total entropy of the weights γγ . Finally, the first element of the

objective function is scaled by the convex combination of the negative of the entropy of

the priors. If, for example, γ
k

= 0 , then it is scaled by the negative entropy of the uniform
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distribution (for coordinate k), which is − ln M( ) . If, on the other hand, γ
k

= 1, then it is

scaled by km
m

km qq log∑−≡ξ , which equals zero iff q k
 is a spike prior. This scaling, or

normalization, is needed because without it, the first two elements are of different

magnitude and sign. Thus, without this normalization, the uniform prior always takes

over, and the DWP reduces to the GME.  This is because the first element of the

objective function is always non-positive, while the second element is always non-

negative. With this scaling, however, the two parts of the objective can “communicate” in

the sense that both are of the same sign and magnitude, and there is a data-based choice

of the prior for each coordinate that is most consistent with the sample information. In

this way this estimator simultaneously chooses the mixture of the two alternative priors

on a coordinate-by-coordinate basis and uses this information, along with the data, to

determine the shrinkage and to provide estimates of the unknown parameters.  We note in

conclusion that if one wishes to avoid the scaling carried in (4.1), the first component on

the RHS of (4.1) can be substituted for the GCE with uniform priors.  However, the

formulation used here, is computationally superior and more efficient.

4.2 Solution and Properties of the Estimator

The solution to the optimization problem (4.1–4.3) yields
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and

γγ hh khk zp∑≡ ~~ (4.7)

where λλ  reflects the T-Lagrange multipliers for the data equations (4.2) and

( ) k
kk

k
k M

A γ
ξγγ

γ ~
~log1~

~1
+

+−
−

≡  .  As before, (3.9) and (3.10) provide the basis for

recovering estimates of ββ  and e.  As γ k → 0  the designated prior becomes more uniform,

with the estimates approaching those of the GME estimator.  For large values of γ k

(above 0.49), the GCE estimator with an informative (in our case, point mass on zero)

prior takes over.

The following conditions ensure consistency and asymptotic normality of the

DWP estimation and variable selection rule.

i)  The errors’ support v is symmetric around zero (see A2).

ii)  The support space z k
 spans the true value of each one of the unknown parameters ββ.

Further, the support has a finite lower and upper bounds zk1  and zkM  respectively (see

A1).

iii)  The errors are iid.

iv)  
∞→

−

T
XXT 'lim 1

 exists and is nonsingular.
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The proof of consistency and asymptotic normality follows directly from the empirical

likelihood approach (Owen, 1990, 1991; Qin and Lawless, 1994; Golan and Judge,

1996).  Similarly, these proofs can be established by following Mittelhammer and Cardell

(1996).

In general, under the above four conditions, ( ) ),(ˆ d
D W PQNT 0→− ββββ  where

])'([ 112 −−= XXTlimQD W P σ  is the asymptotic covariance matrix for the DWP.  Since ββ

is a continuous function of λλ (the Lagrange multipliers) this statement is an immediate

extension of Qin and Lawless (1994, Lemma 1 and Theorem 1).  Finally,

∑−=
t

teKT 22 ˆ)]/(1[σ̂  with $ $e v wt j
j

tj= ∑  is a consistent estimator of the variance.

4.3.  Diagnostics and Inference

Given this testing basis, we propose a test to compare the restricted DWP model with the

unrestricted one.  With identical, and symmetric around zero, supports z and v for both

problems, we follow Owen (1990; 1991), Qin and Lawless (1994), and Golan and Judge

(1996) and define an empirical entropy (or expected log-likelihood) ratio statistic

)
~

()( 0 ββ EEE LL −≡l (4.8)

where )( 0βEL  applies to the optimal value of the DWP estimator’s objective function

when restricting ββ == ββ00 = 0 , while 
)

~
(βE

L  is the optimal value of the DWP estimator’s

objective function when the ββ’s are not restricted (i.e., model 4.1-4.3).  Under the null,

2l E  is asymptotically distributed as a 2
)(Kχ .  Similarly, one can test the hypothesis
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whether each one of the K covariates is extraneous. In that case, the entropy-ratio statistic

El2  has a limiting distribution of 2
)1(χ .

We now use the DWP rule to provide a normalized (information) entropy

measure, which will be used as the criterion for identifying and eliminating the

extraneous variables from the design matrix.  Let the normalized entropy for each

coordinate k be

 
M

pp
S

M

m kmkm
k log

~log~
)~( 1∑ =

−
≡p (4.9)

where S ˜ p k( )= 1 implies maximum uncertainty and S ˜ p k( )= 0  implies full certainty.

Next, we can relate the normalized entropy, or information measure, S, with the

χ 2  statistic.  We start by pointing out that each component of (4.1) is a basic cross-

entropy measure for some proper set of probabilities.  Ignoring the γ’s for simplicity sake,

let  kmp~ be any appropriate estimator of kmp  and let }~{ kp be a set of M probabilities over

the M-dimensional support space kz  for each one of the K coordinates.  Then, we define

the statistics

∑ ∑= =
≡ K

k

M

m kmkmkm qppI
1 1

)/~log(~);~( qp , (4.10)

and

∑
=

− −≡
M

m
kmkm

km
M qp

q
M

1

22
)1( )~(

1χ ,  for each k=1, 2, …, K. (4.11)
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A second order approximation of );~( qpI is just the entropy-ratio statistic for evaluating

p~  vs. q discussed above.  That is, for each k,

∑
=

−≅
M

m
kmkm

km
kk qp

q
I

1

2)~(
1

2
1

);~( qp ,   for each k=1, 2, …, K (4.12)

so 2M times the entropy-ratio statistic corresponds to χ( )M −1
2 .  Given this relationship, we

use the normalized entropy measure, for each covariate k, in order to test the hypothesis

H k0 0:β =  for each k.  Thus, );~(22
)1( kkM MI qp=−χ  for the spike priors qk .

Based on the above we can define some rules to identify the extraneous variables.

First, the following variable selection rule is defined.  If ( )[ ] 99.0~1 ≥− kS p , then variable

k is classified as extraneous. Conversely, if ( )[ ] 99.0~1 <− kS p , then a real classification of

the variable is suggested. An ( ) 99.0~ =kS p  as opposed to 1.0 is used to allow for

insignificant computer rounding effects.

Alternatively, a second identification criterion is proposed.  This criterion is based

on the weight ˆ γ k  in (4.1).  If for a particular variable ˜ γ k < 0.5 , then a non-extraneous

variable is identified.  As ˜ γ k  decreases, the strength of this identification is increased.

Conversely, a ˜ γ k ≥ 0.5  suggests the variable belongs in the extraneous category.

Finally, we relate our choice of 1-S( ~pk )≥ 0.99 to the χ2  measure which, in that

case, yields,

χ( ) (~ ; ) ln( )[ (~ )]M k k
u

kMI M M S− = = −1
2 2 2 1p q p (4.13)
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where qk
u =1/M for all m=1, 2, …, M.  Thus, for M=5 (the number of support points used

in all the experiments presented in the following sections), the 0.99 rule implies

χ χ2
4
2159 133= > =. ( ) .( )

c  for α=0.01.

4.4 Comparison With the ML Approach

Having specified an estimator with a variable selection component and demonstrated its

asymptotic properties, it is possible to compare its sampling performance with other

conventional estimation rules and with other variable selection criteria.  To achieve this

comparison, instead of working with each data point directly, it is possible to follow

common practice and transform the data representation (4.2) to a moment representation

X’y=X’Xββ +X’e=X’XZp+X’Vw (4.2a)

where all previous definitions of ββ and e follow and V is a matrix composed of the T

vectors v.

LEMMA 1: If we let v=0  and substitute the K pure moment conditions X ′ y = X ′XZ p  for

the T data-consistency equations (4.2) then, under restriction (ii), the

resulting estimates of the problem (4.1)–(4.3) are equivalent to the least

squares (ML) estimates.

This proof is immediate since the constraints X ′ y = X ′XZ p , that must be

satisfied, are just the first order conditions for the least squares (ML) estimates.

LEMMA 2: For any finite data set, the )
~

var()
~

var( )()( GCEkD W Pk approxapprox ββ ≤  for all k.
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The logic for the proof is as follows.  Golan, Judge and Miller (1996, Chap. 7)

show that for all v ≠ 0 , the approx approxk GCE k LS MLvar(
~

) var( $ )( ) ( / )β β<  for all finite data

sets and for all k.  Following their logic, for expository purposes, let X be an orthonormal

matrix and the error covariance ∑ e = σ 2 I T
. Under these assumptions the approximate

DWP covariance is

( ) 1222
(DWP) )'(~~~~~~~ −−

≅∑∑+∑∑= XXCov zvzz σσβ (4.14)

where 
~∑ z  and 

~∑ v  are the respective covariances for ~p  and ~w . The kth element of (4.14)

is

Var k DWP
z

z v

(
~

) ~
~

~ ~( )β σ
σ

σ σ
=

+






2

2

2 2

2

(4.15)

where at the limit, ~σv
2 =0, and (4.14) is just the LS ML( ) variance $σ 2 . To compare the

DWP and GCE variances for the kth element, we need to evaluate ~σ z
2 , which is just

~ ~ ~σ z km
m

km km
m

kmp z p z2
2

= − 



∑ ∑ . (4.16)

The variance (4.16) reaches its maximum at a given kz  for ~ /p Mkm = 1 , for all

m=1, 2, …, M.  In Section 3, given the data constraints, the GCE objective (with uniform

priors) makes the estimates ˆ p km  as uniform as possible. Alternatively, the spike priors in

the DWP estimator make the ˜ p km  the least possible uniform given the data.
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Consequently, the less uniform the ˜ p km , the smaller ~σ z
2  in (4.16). This establishes the

relationship approx approxk DWP k GCEvar(
~

) var( $ )( ) ( )β β≤ .

To summarize, most variable selection models (criteria) require choosing among

2
K  different models while imposing some unknown smoothing function [Zheng and Loh,

(1995)] or smoothing parameter (e.g., C p  and AIC). Alternatively, the DWP is a data-

driven penalty function estimator that is based on weak distributional assumptions.  It

does not require K2  steps and/or a pre-specified smoothing parameter.  It is a one step

estimation rule that requires the pre-specified support spaces.  Finally, note that both the

popular AIC variable selection rule and DWP are based on the Kullback-Leibler

information (cross entropy) measure. If we make use of the pure moment condition (4.2a)

within the DWP problem (4.1)–(4.3), then it is easy to show a proportional relationship

between the DWP and an AIC criterion for each of the 2 K  models7.

5. Sampling Experiments

In this section we report some results of Monte Carlo sampling experiments to indicate

the small sample performance of the DWP estimator and, under a squared error loss

measure, compare it with other relevant traditional and shrinkage estimators. For the

estimator comparisons, we continue to consider the multivariate estimation problem

where the ML estimator is
 
δ 0 b( ) and has risk ρ ββ, δδb( )= σ 2 tr X ′X( )− 1

.  We note here that

in this work we restrict ourselves to the squared error loss measure and do not attempt to
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analyze predictive performance8.  For a comprehensive comparison of the predictive

powers of GME and some Bayesian methods (MELO and BMOM) see the recent work of

Perloff and Shen (1999).

5.1 The Symmetric Case

In order to provide an experiment that involves a mean square prediction error loss and a

comparison with the well-known positive rule Stein shrinkage estimator, we use the

orthonormal K-mean linear statistical model

y = X ββ + e = X S
− 1

2 S
1

2 ββ + e = A θθ + e (5.1)

where S
1

2  is a positive definite symmetric matrix with S
1

2 S
1

2 = S = X ′X , A ′ A = Ι Κ  and

θθ = S
1

2 ββ . In the experiment e ~ N 0 , σ2 I T( ),  σ = 1  and K = 4. The risk

( ) ( ) ( ) ( )



 −−=



 −− ββββββββθθθθθθθθ ~''~~'~ XXEE (5.2)

yields a weighted loss function in terms of ββ  and results in the mean square prediction

error criterion that is often used in econometrics to evaluate performance. The parameter

space investigated is θθ = cd i
, where )0,0,0,( 1

'
1 θ=d , )0,0,,( 21

'
2 θθ=d  and

)0,,,( 321
'
3 θθθ=d . The scalar c is chosen so that the parameter vector length

  θθ′ θθ( )1 2 = 0, 1, 2, K, 66 . For selected values of the θθ′ θθ( )1 2  parameter space, 5,000 samples

                                                                                                                                                
7  For a nice discussion of the AIC criterion and its relationship to the CE criterion and other information
criteria, within the model selection, see Lavergne (1998).
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of size T = 10, 30 and 100 were generated and empirical estimator risks under a

δ y( )− θθ 2
 measure were obtained. For the DWP estimator, )100,50,0,50,100(' −−=kz

and ),0,3(' yy σσ−=v  where yσ  is the empirical standard deviation of each sample.

Further, )0,0,1,0,0(' =kq  for each k, which means we are putting point mass at zero for

each θ  in the case of the GCE estimator, and u’=(.33, .33, .33) for each t.  For

comparison purposes, the risk for the ML, positive rule Stein (PRS), GME and GCE

estimators are reported.   To make the ML approach fully comparable to the DWP, we

need to use the constrained ML where the constraints specified (for each β) are the lower

and upper bounds of z.  But because we use very wide bounds, the constrained solution is

equivalent to the unconstrained solution and therefore we refer to it as ML.

The risk for the PRS over the θθ′ θθ( )
1

2  parameter space was numerically evaluated

using an algorithm by Bohrer and Yancey (1984). The z
k  and v support spaces noted

above are also used for the GME and GCE estimators.  It is worth noting that the support

spaces for zk  where chosen to reflect very wide bounds. Increasing these bounds did not

change the estimates.

5.1.1 Experiment 1 -  )0,0,0,( 1
'
1 θ=d

5.1.1a Variable Identification

First, we focus on the variable selection objective with a design matrix involving

one non-extraneous and three extraneous variables ( Table 1). The last three columns of

                                                                                                                                                
8  In future work we will investigate the predicitive performance of these estimation rules where the
parameters of each method are restricted to fall within the same bounds.
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Table 1 provide information that forms a basis for identifying the correct design matrix

for different points in the θθ′ θθ( )1 2
 parameter space.  The column labeled ˜ γ γ  identifies the

weight between the uniform and the point mass prior for each coordinate at each point in

the θθ′ θθ( )1
2  parameter space. Note at the origin the weight is 0.5, which signifies that the

informative prior with point mass at zero is the active prior. This choice remains active

over the whole θθ′ θθ( )1
2  parameter space for the extraneous variables. For the non-

extraneous variable, as θθ′ θθ( )
1

2  increases, the weight on the point mass prior decreases

and finally all weight is allocated to the uniform prior.

[Table 1 – about here]

Using the normalized entropy measure, column 5 reports the probability of

correctly identifying each of the variables.  Note at the origin, where all coordinates are

extraneous, and the point mass prior is consistent with the location parameters, the

probability of correct identification is about 0.98.  Over the parameter space this

identification probability is maintained for the extraneous variables. For the non-

extraneous variable 1x , over the range θθ′ θθ( )1
2 )2,1(∈ , the DWP rule underfits, and the

probability of correct variable identification is on average less than 0.5.  However, for

θθ′ θθ( )1 2 ≥ 3 , the probability of correct identification, on average, approaches 1.0.  In terms

of the normalized entropy measure, these results mirror those reported under the ˜ γ γ 

column. For the non extraneous variable, x
1
, the normalized entropy measure, which

reflects the probability of being an extraneous variable, decreases as θθ′ θθ( )1 2
 increases,

and thus reinforces the ˜ γ k  measure in identifying this variable from its extraneous
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counterparts. One reason for these nice results is that when all but a single variable are

extraneous, a model that identifies these extraneous variables correctly, must also identify

the single non-extraneous variable correctly.  The next set of experiments investigate the

more complex case of more than a single non-extraneous variable.

5.1.1b Empirical Risks

In this section, we assume that an investigator wishes to use the DWP formulation

as an estimator that shrinks but does not eliminate. To show the statistical consequences

of this rule, we present in Figure 1 empirical risks over the θθ′ θθ( )1 2  parameter space. As a

basis of comparison, we present the corresponding risks for the ML and PRS estimators.

The comparison with the PRS points out the risk implications of Stein-like estimators

where all coordinates are shrunk by the same amount versus estimators such as GCE,

GME and DWP, where shrinkage may vary from coordinate to coordinate. Thus, in this

experiment we contrast the performance of the estimators where extraneous variables

exist and are shrunk but not identified and removed. Variability and bias results for this

experiment (for the DWP) are presented in column 2 of Table 1.

[Figure 1 – about here]

Under this sample design the GCE estimator is risk superior to the PRS estimator

over the whole range of the θθ′ θθ( )1 2  parameter space. At the origin the empirical risks of

the PRS estimator and the GCE estimator, with spike prior at zero, are 1.472 and 0.53,

respectively. From this point in the θθ′ θθ( )1 2
 parameter space the risk of the positive part

Stein increases sharply, reaches 2.8 at 10 and finally becomes equal to the ML risk of 4.0

around θθ′ θθ( )1 2
 = 60. Alternatively, the GCE empirical risk increases more slowly and
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finally reaches 3.37 as θθ′ θθ( )1 2  approaches 60. Consequently, in these sampling

experiments the GCE estimator is risk superior, over the range of the θθ  parameter space,

to both the ML and PRS estimators. If, instead of using a point mass prior at zero, we had

used a uniform prior over the elements in q
k
, the empirical risk of the GME estimator is

about 3.90 over the whole θθ′ θθ( )1 2
 parameter space.

Alternatively, the empirical risk of the DWP estimator is 0.246 at the origin where

all variable coordinates are correctly shrunk toward zero, and then reaches a maximum of

2.61 at θθ′ θθ( )1 2 = 3 , where θ1 continues to be shrunk toward zero and the bias is a major

part of the risk component. From there on the risk decreases sharply and stabilizes at

about 1.20 for the remainder of the parameter space. In this range of the parameter space,

where θ1 is shrunk relatively little, the coefficients of the extraneous variables θ
2
,θ

3
 and

θ
4  continue to have a maximum shrinkage toward zero. The DWP estimator identifies

and shrinks the extraneous variables correctly and is superior to all the other estimators

over the whole parameter space9.

Finally, it is important to remember that under the GME, GCE and DWP rules,

specific bounds are imposed on all of the parameters’ values.  Naturally, these bounds

may have a significant impact on the sampling results.  Such bounds can of course be

introduced in traditional Bayes and other sampling theory approaches.  To provide a fair

comparison, the bounds used in this paper covered a very large range of the parameter

spaces such that the restricted and unrestricted ML yielded the same results.

                                                
9   These experiments were repeated for different sample sizes but to save space are not reported here.  For
example, for T=30 the MSE for the DWP is about 3.2 time smaller than that of the ML over the whole
parameter space.  For T=100, the DWP maintains its superiority as well.  In this case it is between 2.5 to
3.2 times smaller than the ML over the parameter space.
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Nevertheless, one should keep in mind that the use of bounds can cause moments to exist

and eliminate outlying estimates.  For example, Perloff and Shen (1999) show that when

estimating γ=1/β with β restricted to the range 0<a<β<b, this restriction precludes

estimates of β to take on values that are close to zero, implying that the effect on the

estimated values could be quite large.  Consequently, the results presented here should be

interpreted with these qualifications in mind. To summarize, there is a need for much

more research in order to identify and establish the exact impact of imposing bounds on

the properties of any estimator.  As the method developed here, as well as the GME/GCE,

uses pre-specified bounds on the parameters, the effects of these bounds on the

estimator’s properties is a subject for future studies.

5.1.2 Experiment 2 - )0,,,( 321
'
3 θθθ=d

The previous experiment pretty much tells the estimation and variable selection story

because the DWP results evolve on a coordinate-by-coordinate basis. Thus, risk and

variable selection results for any mix of non-extraneous and extraneous in the full design

matrix can be approximated from the results of Section 5.1.1.

To give a sense of the risk results for different ratios of non-extraneous to

extraneous variables, we present the empirical risk functions for the DWP and ML rules

in Figure 2. Note that, over a small portion of the parameter space (for small values of

θ
k
), the DWP rule with 25 percent extraneous variables underfits and is inferior to the

ML and Stein rules. However, over most of the θθ′ θθ( )1 2
 parameter space, the DWP rule is

risk superior. Finally, in terms of variable selection, the ˜ γ k  weight parameter and the

normalized entropy measure work as in Section 5.1.1a. Both the non-extraneous and
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extraneous variables are identified, over the range of the θθ  parameter space, with

probabilities ≥ 0.95.

[Figure 2 – about here]

5.1.3 Experiment 3 - The χ2 Error Distribution

To demonstrate the robustness of the DWP estimator in a non-Gaussian setting, we

repeated the experimental design of Section 5.1 with χ 4( )
2  random errors, normalized to

have a unit variance. The results for this case (not reported here)10 are similar in structure

and magnitude to those presented in Figure 1 and Table 1. In terms of identifying the

extraneous and non-extraneous variables, the DWP mirrors the results reported in Table

1. In particular, at least 93 percent of the extraneous variables are identified over all

points in the θθ′ θθ( )1 2  parameter space.

5.2 The Non-Symmetric Case

5.2.1 Experiment 4 – High Condition Number

Consider for this experiment the general linear statistical model y = X ββ + e , where the

ML estimator bä  is distributed as ( )12 )'(, −XXN K σâ , and X ′ X  is a positive definite

matrix. For constructing the design matrix we use the condition number’s definition

21 /)'( ππκ =XX  which is the ratio of the largest and smallest singular values of the

design matrix X, with columns scaled to unit length. As κ X ′ X( ) increases, traditional

estimators, such as the ML estimator, become unstable and have low precision. For a

review of different regularization methods that exhibit relatively good risk characteristics
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see, for example, Hoerl and Kennard (1970), O'Sullivan (1986), Breiman (1995),

Tibshirani (1996), and Titterington (1985).

The sampling experiment for the non-symmetric case is similar to Experiment 1,

reported in Section 5.1.1. However, to reflect a design matrix more in line with data that

are by and large non-experimentally generated, instead of a condition number of

κ X ′ X( ) = 1  for the design matrix, we now specify a very moderate condition number of

κ X ′ X( ) = 90 11. Under the SEL, the ML risk is approximately 47.5 and the iterative ridge

estimator risk is approximately 14.1. The risk performance of the DWP and GCE rules

mirrors that for the well-posed case, where κ X ′ X( ) = 1 . The DWP risk starts at about

0.21, increases to a maximum of 2.18 for ( ) 2' 2/1 =ââ , and decreases rapidly to 1.0 from

about ( ) 12' 2/1 =ââ  in the parameter space. Unlike the DWP, the GCE risk increases

monotonically with ββ′ββ( )1 2
 and is unbounded (or bounded by the support space Z).

Selected points on the parameter space for the DWP estimator are reported in Table 2.

Note in comparing the MSE for the well-posed design matrix in Table 1 to the

moderately ill-posed design of Table 2, that the performance of the DWP rule actually

improves as the condition number κ X ′ X( ) increases.

[Table 2 – about here]

The results of this case are basically similar in nature to the empirical risk results

of Figure 2 and are in each case, greatly superior to the risk results for the ML and ridge

                                                                                                                                                
10  All results discussed in this Section are available, upon request, from the author.
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estimators. The risk results from experiments with higher and lower condition numbers

were virtually the same as those reported in the table and are not reported here.

In terms of identifying extraneous variables, the sampling performance for the

case of a κ X ′ X( ) = 90  design is reported in Table 2. Again, the results for the ill-posed

case, mirror those of the well-posed case reported in Table 1. Note the probability (or

frequency) of identifying the extraneous variables exceeds .95 in all cases.

5.2.2 Experiment 5 -  Ill-conditioned Design and t
3
 Error Distribution

Within the linear model and the above framework, in this experiment we investigate the

small sample performance of a moderately ill-conditioned design matrix and a non-

normal error process. The design matrix consists of K = 4  covariates, generated such that

x
4

= x
1
+ 0.15e * , where e *  is a normal (0, 1) random vector. This experiment follows

George and McCulloch (1993).  The errors are generated from a student-t distribution

with three degrees of freedom, normalized to a unit variance.  The results plotted in

Figure 3 exhibit in general the risk behavior of the previous experiments. The ML

empirical risk is 46.167 and the GME risk is 38.43. Thus, the DWP estimator exhibits

superior risk performance over the range of ββ′ββ( )1 2  parameter space. If ˜ γ γ  or S are used as

variable selection measures, the performance of the experiments in the previous sections

is duplicated.

[Figure 3 – about here]

                                                                                                                                                
11 For example, the commonly used “Longley” aggregated employment data (Longley, 1967) have a
condition number of approximately 11,100; a highly collinear case. Our choice of 90 is completely
arbitrary with the objective of maintaining a very moderate, but yet realistic, level of collinearity.
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5.3. Experiment 6

To include experiments where the design matrix has more variables, we report two

experiments that duplicate those carried out by Judge et al. (1987). The experiments

involve the linear statistical model y = A θθ + e  with nine location parameters, four

extraneous variables, a (20 × 9)  design matrix A, where A′ A = I9
, an error process, e,

distributed as ( )20
2, IN σ0  with 12 =σ  and 500 replications 12. The supports z k  and v are

specified as before. The first experiment, Model 1, involves the location vector

θθ = 5,4,3, 2,1, 0, 0, 0, 0,( )′   and the second, Model 2, involves θθ = 10 ,8,3,2,1,0,0, 0,0,( )′ .

Table 3 compares the empirical risk of six estimators: ML; DWP; the positive part

Stein (1981), θθ ++ , that shrinks all coefficients toward zero; AIC (Akaike, 1974), SC

(Schwarz, 1978); and Cp (Mallows, 1973). The ML estimator is close to the theoretical

risk of 9. The traditional and the Stein θθ ++  variable selection estimators have empirical

risks that are superior to the ML but are significantly inferior to the DWP that shrinks but

does not eliminate variables. In terms of variables selection, the DWP results are

presented in Table 4.

[Tables 3-4 – about here]

The results presented here are consistent with the earlier experiments where the

higher the parameter space θθ′ θθ( )1 2 , the better the DWP performs relative to the other

estimators.  Further, increasing the θθ′ θθ( )1 2
 to 37 where ββ = 25, 20 ,15 ,10 , 5, 0, 0, 0, 0( )′

yields risk of 6.32 while the risk for θθ ++  practically equals the ML risk, which is 8.8. In
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terms of variable identification, the non-extraneous variables are always identified while

the extraneous variables are identified at least 80 percent of the time.

6. Summary Remarks

In this work a new simultaneous variable selection and estimation rule is developed and

investigated.  This new rule provides a basis for identifying the non-extraneous and

extraneous variables in the design matrix of a linear statistical model and simultaneously

yields good estimates.  The result is a simple, consistent, one-stage estimator, based on

one sample of data and a K variable design specification that leads to a basis for semi-

parametric entropy-based inference. This data-based procedure is based on weak

distributional assumptions and it performs well for both ill and well-posed problems, non-

Gaussian error distributions and small samples of data. In this approach coefficient

shrinkage and variable elimination are data determined and done on an individual

coordinate basis. Further, the choice of prior is data based and endogenously determined.

Consequently, the method provides a simple way of introducing and evaluating prior

information in the estimation and variable selection process. In contrast to other

shrinkage-variable selection procedures, that require a tuning parameter for variable

identification and/or determining the degree of shrinkage, upper and lower bounds on the

estimated parameters are specified here.

This method is applicable to a wide range of econometric-statistical models (linear

and nonlinear) and flexible enough to simultaneously cope with a variety of model

specification uncertainties. Solution algorithms for these types of non-linear inversion

                                                                                                                                                
12  Due to the larger size of each sample (relative to most of the previous experiments), the sampling
experiment is performed for 500 samples rather than for 5000 samples for each point on the parameter
space.
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problems are available and easy to implement.
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Table 1
Performance of the DWP estimator for selected points where θθ == θ1 , 0, 0, 0( )′  and

x2 , x 3 , x 4  are extraneous and the ML MSE δδb( )= 4

θθ′ θθ( )1 2 MSE ( ){ }θ~Covtr ˜ γ  γ  

x
1

x
2

x
3

x
4

Frequency of
Correctly

Identifying
x1 x2 x3 x4

)~(1 kpS−
x1 x 2 x3 x 4

          0 0.246   0.246 .50, .5, .5, .5   .98, .97, .98, .98 .999,.999,.999,.999
          1 1.159   .50 .49, .5, .5, .5   .12, .97, .98, .97   .99,.999,.999,.999
          2 2.576 1.30 .47, .5, .5, .5   .47, .97, .97, .97   .97,.999,.999,.999
          3 2.617 1.62 .43, .5, .5, .5 .  84, .97, .97, .97   .94,.999,.999,.999
          4 2.182 1.46 .40, .5, .5, .5   .98, .96, .96, .97   .91,.999,.999,.999
          5 1.891 1.29 .38, .5, .5, .5 1.00, .97, .96, .97   .89,.999,.998,.999
          6 1.802 1.30 .35, .5, .5, .5 1.00, .96, .96, .97   .87,.999,.999,.999
        10 1.548 1.28 .26, .5, .5, .5 1.00, .96, .96, .97   .81,.998,.998,.999
        20 1.276 1.22 .14, .5, .5, .5 1.00, .96, .95, .96   .69,.998,.998,.998
        60 1.202 1.20 .01, .5, .5, .5 1.00, .96, .96, .97   .58,.998,.998,.999
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Table 2

Performance of the DWP estimator for ββ == β1 , 0, 0, 0( )′ ,  T = 10 and κ X ′ X( ) = 90

ββ′ββ( )1 2 MSE ( ){ }θ~Covtr ˜ γ  γ  

x
1

x
2

x
3

x
4

Frequency of
Correctly

Identifying
x1 x2 x3 x4

)~(1 kpS−
x1 x 2 x3 x 4

          0 0.209   0.209 .50, .5, .5, .5 .97,.999,.98,.96 .998, 1.0, .999,.999
          1 1.096 0.52 .49, .5, .5,. 5 .16,.998,.97,.96   .99, 1.0, .999,.999
          2 2.180 1.26 .46, .5, .5, .5 .58,.995,.96,.95   .97, 1.0, .999,.998
          3 2.051 1.38 .43, .5, .5, .5 .91,.995,.96,.95   .94, 1.0, .998,.998
          4 1.689 1.21 .40, .5, .5, .5 .99,.999,.96,.95   .91, 1.0, .998,.998
          6 1.521 1.19 .34, .5, .5, .5 .999,.999,.96,.95   .87, 1.0, .998,.998
        10 1.238 1.06 .26, .5, .5, .5 1.0, 1.0, .95,.95   .80, 1.0, .998,.998
        20 1.074 1.02 .13, .5, .5, .5 1.0, 1.0, .95,.95   .69, 1.0, .998,.998
        60 0.996 0.996 .02, .5, .5, .5 1.0, 1.0,.96,.95   .58, 1.0, .998,.998
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Table 3

Empirical risks of a range of competing estimators for the symmetric case

Empirical Risk of

Model 1
ML
8.77

θθ ++

8.18
AIC
8.50

SC
8.73

Cp

8.64
DWP
7.25

Model 2 8.89 8.63 8.03 8.40 8.88 7.00
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Table 4

Variable selection results of the DWP estimator for the symmetric case

Model Estimator Frequency of Identifying Correctly
x1 x2 x3 x4 x 5 x6 x 7 x8 x9

Risk

Model 1 DWP 1.00    .99  .94  .89   .39   .83   .82   .80  .77 7.25
Model 2 DWP 1.00  1.00  .93  .73   .39   .81   .82   .82  .82 7.00


