1. Let \mathcal{M} and \mathcal{N} be differentiable manifolds of dimensions, respectively, m and n. Prove that $\mathcal{M} \times \mathcal{N}$ is a differentiable manifold of dimension $m + n$. It follows that the torus $S^1 \times S^1$ is a differentiable two dimensional manifold.

2. Prove that there is a bijection between the set of differentiable functions on S^1 and the set
\[\{ f : \mathbb{R}^1 \to \mathbb{R}^1 | f \text{ is differentiable and periodic with period } 2\pi \} \]

3. Prove that, while of the same dimension, S^2 and $S^1 \times S^1$ are different manifolds, i.e. there is no diffeomorphism $\phi : S^1 \times S^1 \to S^2$.
